

MEMBRANPUMPEN N° E21-PM

C € Made in Italy

Die Verpackung enthält produktspezifisch eines oder mehrere der folgenden Materialien. Diese sind nach den im Anwendungsland geltenden Bestimmungen zu entsorgen.

Pappe• Polyethylen-Beutel• Styropor• Papier• Holz• Nägel• Kunststoffbänder• Zellophan• Klammern• gummiertes Papier

ECODORA S.r.l. bietet eine breite Palette von Geräten für die Fluid-Dynamik, entwickelt, um alle Bedürfnisse der Kunden zu erfüllen.

Qualität, Zuverlässigkeit und Design, die die Marke ECODORA auszeichnen, sind international anerkannt.

Ein technischer Service vor und nach dem Verkauf schlägt das am besten geeignete Produkt für die Bedürfnisse des Kunden vor und unterstützt sogar die Endanwender.

ECODORA S.r.l. strebt eine langfristige Zusammenarbeit mit seinen Kunden an, indem es auf deren Erwartungen eingeht und Produkte höchster Qualität anbietet.

www.ecodora.com info@ecodora.com

C € Made in Italy

INHALT

MEMBRANPUMPEN

Seite 8

Membranpumpen aus Aluminium

Seite 14

Membranpumpen aus Aluminium Mit Ktl - Beschichtung

Seite 22

Edelstahl-Membranpumpen AISI 316 mit Aluminiummotor

Seile 26

Edelstahl-Membranpumpen AISI 316 mit Polypropylenmotor

Die pneumatischen Doppelmembranpumpen von ECODORA wurden für ein breites Spektrum an Fluiden, u.a. mit hoher Viskosität und enthaltenen Feststoffen, entwickelt und hergestellt.

Dank ihrer ATEX-Zertifizierung können die Pumpen auch für schwierige Anwendungen an Orten mit hoher Feuchtigkeit oder potentiell explosiver Atmosphäre eingesetzt werden.

- Selbstansaugend
- Einfache Zuführregulierung
- Keine Beschädigung bei längerem Leerlaufbetrieb

dies sind einige der Merkmale, weshalb diese Pumpen in allen Arbeitsumgebungen so vielseitig einsetzbar sind und geschätzt werden. Die große Bandbreite der für die Pumpen verwendeten Materialien erleichtert die Auswahl des Modells, das die beste chemische Kompatibilität mit der zu pumpenden Flüssigkeit und der Arbeitsumgebung aufweist.

Seite 30

Membranpumpen aus Aluminium und Polypropylen

Seile 34 Membranpumpen aus Polypropylen

Seite 36
Zubehör

Unsere Vertriebsabteilung steht Ihnen für Informationen und Lösungen zur Verfügung.

www.ecodora.com

MEMBRANPUMPEN AUS ALUMINIUM

Die ECODORA-Membranpumpen aus Aluminiumdruckguss werden in verschiedenen Größen und aus hochwertigen Materialien hergestellt und ermöglichen das Pumpen einer Vielzahl von Flüssigkeiten.

Darüber hinaus ist diese Art von Pumpe für den Einsatz in explosionsgefährdeten Umgebungen gemäß der ATEX-Richtlinie zertifiziert, was sie ideal für den Einsatz in schwierigen Umgebungen macht.

Unsere technische Abteilung steht Ihnen jederzeit zur Verfügung, um Sie bei der Auswahl der Materialien von Membranen, Kugeln und Sitzen zu unterstützen, die mit dem zu verpumpenden Medium kompatibel sind.

Technische eigenschaften

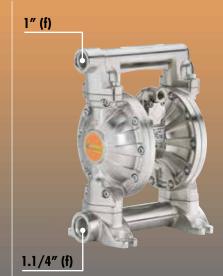
MEMBRANEN PNEUMATISCHE MOTORBLOCK LUFTVERTEILEREINHEIT Ausgestattet mit Umsteuerkolben mit Abwürgeschutz. Dieser Kolben verhindert ein Anhalten der Pumpe an einem toten Punkt, auch unter kritischen Betriebsbedingungen. **DER PUMPE** und spezifischen Materialien gefertigt, die für viele Arten von Fluiden und für Millionen Zyklen geeignet sind. Erfordert keine Schmierung, da die sich bewegenden Teile selbstschmierend sind. FLANSCHE Die Flansche wurden so konzipiert, dass sie schwierigen Arbeitsbedingungen standhalten. **PNEUMATIKMOTOR** Mit Frostschutzvorrichtung. So kann die Pumpe mit gleicher Leistung weiterlaufen, auch wenn sie mit unbehandelter Luft betrieben wird. KUGELVENTILE Sind so konzipiert, dass der vollständige Durchfluss der gepumpten Flüssigkeit gewährleistet wird.

GESAMTDURCHFLUSSEINLASS UND ZUFÜHRANSAUGSTUTZEN

Zur Erleichterung der Flüssigkeitsansaugung in jeder Situation. Erhältlich mit Gewinde- oder Flanschanschluss mit unterschiedlichen Durchmessern, je nach Pumpenmodell.

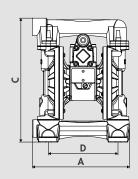
LUFTVERTEILUNGSKLAPPE

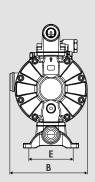
Gewährleistet den reibungslosen Betrieb unter allen Betriebsbedingungen. Einige Beispiele:

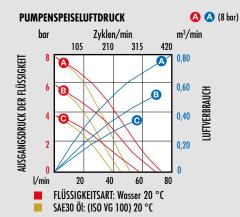

- Mindestversorgungsdruck (min. 2 bar); Kritische Flüssigkeits- und
- Umgebungstemperaturen; Versorgungsdruckschwankungen.

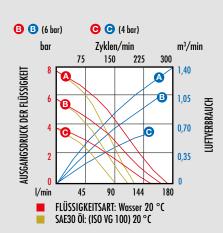
Membranpumpen R. 1:1 für die Übertragung, hergestellt aus Spritzguss-Aluminium. Die Pumpen gewährleisten den langfristigen und zuverlässigen Betrieb mit den meisten gängigen Automobilund Industrieflüssigkeiten.

ATEX-Richtlinie

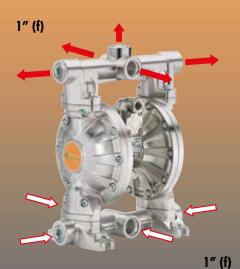





	Modell		AAB-12	AAB-1
Membranen	Membranen Kugeln Kugelsitze		Artikel	Artikel
EPDM	Acetal	Acetal	0E3C1/16111EAA	0E3C1/26111EAA
Hytrel®	Hytrel®	Hytrel®	0E3C1/16111HHH	0E3C1/26111HHH
NBR	Hytrel®	Hytrel®	0E3C1/16111NHH	0E3C1/26111NHH
Santoprene™	Santoprene™	Santoprene™	0E3C1/16111SSS	0E3C1/26111SSS
PTFE+Hytrel® *	PTFE	Polypropylen	OE3C1/16111TTP	0E3C1/26111TTP
Höchstdruck			8 bar	8 bar
Max. Zyklen p	oro Min.		400 cpm	300 cpm
Liter pro Zyklu	us **		0,188	0,590
Max. Ansaugl	höhe		trockene Säule 4,5 m - nasse Säule 7,5 m	trockene Säule 5 m - nasse Säule 7,5 m
Max. Größe d	ler pumpbaren	Feststoffe	1,5 mm	3 mm
Max. Betriebs	temperatur ***		100 °C	100 °C
Lärmpegel			75 dB	75 dB
Max. Luftverb	rauch		0,80 m³/min	1,40 m³/min
Betriebsluftdru			2 - 6 bar	2 - 6 bar
Luftanschluss			G 3/8" (f)	G 3/8" (f)
Luftanschluss A	Ausgang (Scha	lldämpfer)	G 1/2" (f)	G 1/2" (f)
Flüssigkeitsan	igkeitsanschluss Eingang		G 3/4" (f)	G 1.1/4" (f)
Flüssigkeitsanschluss Ausgang			G 1/2" (f)	G 1" (f)
Kugeln für Eingang und Ausgang			0	
	ssungen (A - B		201 - 160 - 256 - 145 - 100 mm	261 - 200 - 345 - 182 - 130 mm
	die Pumpenbe	efestigung	M8	M10
Verpackung [N° 1 - 0,02 m³	N° 1 - 0,03 m^{3}
Gewicht 🖁			6,3 kg	12 kg

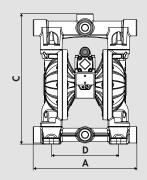

- Bei PTFE-Membranen ist die Durchflussrate um 10 % niedriger.
- Eine Verlagerung während des Zyklus kann durch die Ansaughöhe, die Viskosität der Flüssigkeit, den Luftdruck sowie die Anzahl der Zyklen pro Minute beeinflusst werden.

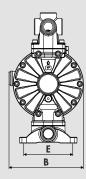
 Die mit der Flüssigkeit in Kontakt stehenden Materialien sowie die Flüssigkeit selber können die Betriebstemperatur beeinflussen.

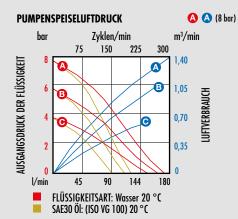


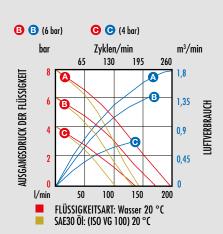
Membranpumpen R. 1:1 für die Übertragung, hergestellt aus Spritzguss-Aluminium. Die Pumpen gewährleisten den langfristigen und zuverlässigen Betrieb mit den meisten gängigen Automobilund Industrieflüssigkeiten.

ATEX-Richtlinie






	Modell		AAB-1-9 mit Mehrfach-Ein/Ausgang	AAB-114	
Membranen	Kugeln	Kugelsitze	Artikel	Artikel	
EPDM	Acetal	Acetal	0E3C3/26111EAA	0E3C1/30111EAA	
Hytrel®	Hytrel®	Hytrel®	0E3C3/26111HHH	0E3C1/30111HHH	
NBR	Hytrel®	Hytrel®	0E3C3/26111NHH	0E3C1/30111NHH	
Santoprene™	Santoprene™	Santoprene™	0E3C3/26111SSS	0E3C1/30111SSS	
PTFE+Hytrel® *	PTFE	Polypropylen	0E3C3/26111TTP	0E3C1/30111TTP	
Höchstdruck			8 bar	8 bar	
Max. Zyklen p	oro Min.		300 cpm	260 cpm	
Liter pro Zyklu			0,590	0,800 l	
Max. Ansaugl			trockene Säule 5 m - nasse Säule 7,5 m	trockene Säule 5 m - nasse Säule 7,5 m	
	ler pumpbaren		3 mm	3 mm	
Max. Betriebs	temperatur ***		100 °C	100 °C	
Lärmpegel			75 dB	75 dB	
Max. Luftverb			1,40 m³/min	1,80 m³/min	
Betriebsluftdru			2 - 6 bar	2 - 6 bar	
Luftanschluss I			G 3/8" (f)	G 3/4" (f)	
Luftanschluss	Ausgang (Scha	lldämpfer)	G 1/2" (f)	G 1" (f)	
Flüssigkeitsan	sigkeitsanschluss Eingang		4 x G 1" (f)	G 1.1/4" (f)	
Flüssigkeitsan	schluss Ausgar	ng	5 x G 1" (f)	G 1.1/4" (f)	
Kugeln für Ein	gang und Aus	gang		0	
	ssungen (A - B		280 - 200 - 352 - 182 - 130 mm	286 - 238 - 386 - 199 - 137 mm	
Schrauben für	die Pumpenbe	efestigung	M10	M10	
Verpackung [N° 1 - 0,03 m³	N° 1 - 0,03 m³	
Gewicht 🔓			13 kg	15 kg	

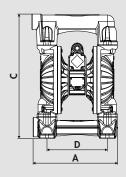

- Bei PTFE-Membranen ist die Durchflussrate um 10 % niedriger.
- Eine Verlagerung während des Zyklus kann durch die Ansaughöhe, die Viskosität der Flüssigkeit, den Luftdruck sowie die Anzahl der Zyklen pro Minute beeinflusst werden.

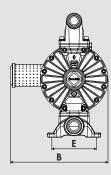
 Die mit der Flüssigkeit in Kontakt stehenden Materialien sowie die Flüssigkeit selber können die Betriebstemperatur beeinflussen.

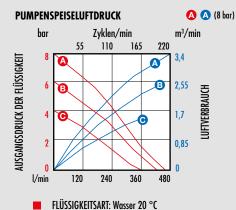
Membranpumpen R. 1:1 für die Übertragung, hergestellt aus Spritzguss-Aluminium. Die Pumpen gewährleisten den langfristigen und zuverlässigen Betrieb mit den meisten gängigen Automobilund Industrieflüssigkeiten.

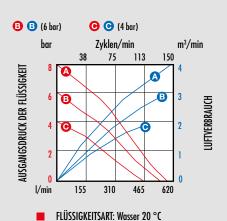
ATEX-Richtlinie

II 2 GD






Modell			AAB-112	AAB-2
Membranen	Membranen Kugeln Kugelsitze		Artikel	Artikel
EPDM	Acetal	Acetal	0E3C1/40111EAA	0E3C1/50111EAA
Hytrel®	Hytrel [®]	Hytrel [®]	0E3C1/40111HHH	0E3C1/50111HHH
NBR	Hytrel®	Hytrel®	0E3C1/40111NHH	0E3C1/50111NHH
Santoprene™	Santoprene™	Santoprene™	0E3C1/40111SSS	0E3C1/50111SSS
PTFE+Hytrel® *	PTFE	Polypropylen	0E3C1/40111TTP	0E3C1/50111TTP
Höchstdruck			8 bar	8 bar
Max. Zyklen p	oro Min.		220 cpm	147 cpm
Liter pro Zyklu			2,150	4,150 l
Max. Ansaugl			trockene Säule 5 m - nasse Säule 7,5 m	trockene Säule 5 m - nasse Säule 7,5 m
Max. Größe d	ler pumpbaren	Feststoffe	5,5 mm	6,5 mm
Max. Betriebs	temperatur ***		100 °C	100 °C
Lärmpegel			78 dB	82 dB
Max. Luftverb	rauch		3,40 m ³ /min	4,00 m ³ /min
Betriebsluftdru			2 - 6 bar	2 - 6 bar
Luftanschluss I			G 3/4" (f)	G 3/4" (f)
Luftanschluss A	Ausgang (Scha	lldämpfer)	G 1" (f)	G 1" (f)
Flüssigkeitsan	nschluss Eingang		G 2" (f)	G 2.1/2" (f)
Flüssigkeitsan	schluss Ausgar	ng	G 1.1/2" (f)	G 2" (f)
Kugeln für Eingang und Ausgang				
	sungen (A - B		350 - 402 - 514 - 250 - 182 mm	427 - 435 - 616 - 305 - 227 mm
	die Pumpenbe	efestigung	M12	M12
Verpackung [N° 1 - 0,07 m³	N° 1 - 0,12 m³
Gewicht 👸			21,5 kg	43 kg

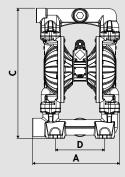

- Bei PTFE-Membranen ist die Durchflussrate um 10 % niedriger.
- Eine Verlagerung während des Zyklus kann durch die Ansaughöhe, die Viskosität der Flüssigkeit, den Luftdruck sowie die Anzahl der Zyklen pro Minute beeinflusst werden.

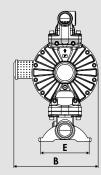
 Die mit der Flüssigkeit in Kontakt stehenden Materialien sowie die Flüssigkeit selber können die Betriebstemperatur beeinflussen.

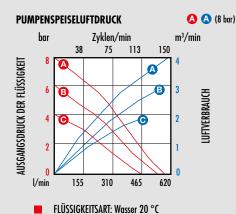


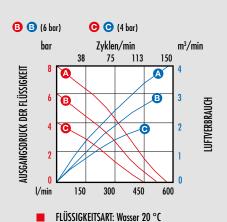
mit flansch 2"

Diese Membranpumpen für den Flüssigkeitstransfer mit Durchflussverhältnis 1: 1 sind aus Aluminiumdruckguss hergestellt , der hohe Qualität und Leistung bei den in der Werkstatt und der Industrie am häufigsten verwendeten Flüssigkeiten verwendeten Flüssigkeiten gewährleistet . Die Flansche können 90° oder 180° gedreht werden, um den Ein- und Austritt der Flüssigkeit und die Verbindung mit der Anlage zu erleichtern. ATEX-Richtlinie






			445 0 1:44 L C L =: /A	2424 0 11	
	Modell		AAB-2 mit Mehrfach-Ein/Ausgang	AABM-2 modular	
Membranen	Kugeln	Kugelsitze	Artikel	Artikel Artikel	
EPDM	Acetal	Acetal	0E3C3/50111EAA	0E3C6/50111EAA	
Hytrel [®]	Hytrel [®]	Hytrel®	0E3C3/50111HHH	0E3C6/50111HHH	
NBR	Hytrel®	Hytrel®	0E3C3/50111NHH	0E3C6/50111NHH	
Santoprene™	Santoprene™	Santoprene™	0E3C3/50111SSS	0E3C6/50111SSS	
PTFE+Hytrel® *	PTFE	Polypropylen	0E3C3/50111TTP	0E3C6/50111TTP	
Höchstdruck			8 bar	8 bar	
Max. Zyklen p	oro Min.		147 cpm	147 cpm	
Liter pro Zyklu	JS **		4,150 l	3,950	
Max. Ansaugh	höhe		trockene Säule 5 m - nasse Säule 7,5 m	trockene Säule 5 m - nasse Säule 7,5 m	
Max. Größe d	er pumpbaren	Feststoffe	6,5 mm	6,5 mm	
Max. Betriebs	temperatur ***		100 °C	100 °C	
Lärmpegel			82 dB	82 dB	
Max. Luftverb	rauch		4,00 m³/min	4,00 m³/min	
Betriebsluftdru	uck		2 - 6 bar	2 - 6 bar	
Luftanschluss I	Eingang		G 3/4" (f)	G 3/4" (f)	
Luftanschluss A	Ausgang (Scha	lldämpfer)	G 1" (f)	G 1" (f)	
Flüssigkeitsan	ceitsanschluss Eingang		G 2.1/2" (f)	ANSI 150 - DIN PN 10 - JIS 10K 2" (50 mm)	
Flüssigkeitsan	keitsanschluss Ausgang		G 2" (f)	ANSI 150 - DIN PN 10 - JIS 10K 2" (50 mm)	
Kugeln für Eingang und Ausgang					
Gesamtabmes	sungen (A - B	- C - D - E)	449 - 435 - 675 - 255 - 227 mm	410 - 435 - 710 - 305 - 238 mm	
Schrauben für	die Pumpenbe	efestigung	M12	M12	
Verpackung [N° 1 - 0,12 m^{3}	N° 1 - 0,13 m³	
Gewicht 🖁			45 kg	50 kg	


- Bei PTFE-Membranen ist die Durchflussrate um 10 % niedriger.
- Eine Verlagerung während des Zyklus kann durch die Ansaughöhe, die Viskosität der Flüssigkeit, den Luftdruck sowie die Anzahl der Zyklen pro Minute beeinflusst werden.

 Die mit der Flüssigkeit in Kontakt stehenden Materialien sowie die Flüssigkeit selber können die Betriebstemperatur beeinflussen.

MEMBRANPUMPEN AUS ALUMINIUM MIT KTL - BESCHICHTUNG

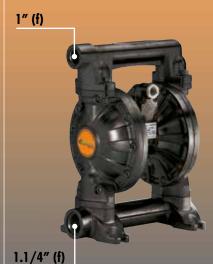
Die Membranpumpen mit Kataphorese- Behandlung stellen die ideale Lösung für den Einsatz unter besonders harten Arbeitsbedingungen dar.

Durch ihre schützende mikrokristallne Schicht, gewährleisten Sie eine hohe Widerstandsfähigkeit gegen schwere chemische und umweltbedingte Korrosionsprozesse.

POWERCRON® 6000 HE Die Kataphorese- Behandlung gewährleistet signifikante Vorteile zu denen eine bessere Durchflusseffizienz, eine geringere Filmdichte und eine sehr hohe Beständigkeit gegen chemische und umweltbedingte Korrosion gehören.

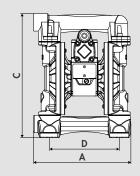
Darüber hinaus können sie in explosionsgefährdeten Bereichen eingesetzt werden, da sie die ATEX-Richtlinien erfüllen.

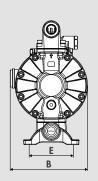
Technische eigenschaften

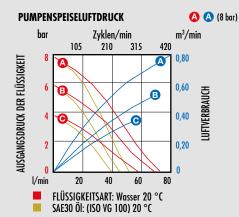


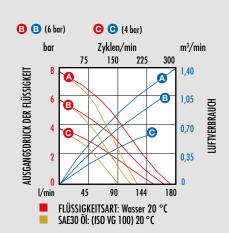
Membranpumpen R. 1:1 zum Transferieren, aus Aluminiumdruckguss, mit schwarzer Kataphorese-Behandlung, die eine Beständigkeit von bis zu 500 Stunden im Salznebel garantiert.

ATEX-Richtlinie






Modell			AAB-12	AAB-1
Membranen	Membranen Kugeln Kugelsitze		Artikel	Artikel
EPDM	Acetal	Acetal	0E3C1/1666VEAA	0E3C1/2666VEAA
Hytrel®	Hytrel®	Hytrel®	0E3C1/1666VHHH	0E3C1/2666VHHH
NBR	Hytrel®	Hytrel®	0E3C1/1666VNHH	0E3C1/2666VNHH
Santoprene TM	Santoprene™	Santoprene™	0E3C1/1666VSSS	0E3C1/2666VSSS
PTFE+Hytrel® *	PTFE	Polypropylen	0E3C1/1666VTTP	0E3C1/2666VTTP
Höchstdruck			8 bar	8 bar
Max. Zyklen	oro Min.		400 cpm	300 cpm
Liter pro Zyklı	JS **		0,188	0,590 l
Max. Ansaug	höhe		trockene Säule 4,5 m - nasse Säule 7,5 m	trockene Säule 5 m - nasse Säule 7,5 m
Max. Größe d	ler pumpbaren	Feststoffe	1,5 mm	3 mm
Max. Betriebs	temperatur ***		100 °C	100 °C
Lärmpegel			75 dB	75 dB
Max. Luftverb	rauch		0,80 m³/min	1,40 m³/min
Betriebsluftdru			2 - 6 bar	2 - 6 bar
Luftanschluss			G 3/8" (f)	G 3/8" (f)
Luftanschluss .	Ausgang (Scha	lldämpfer)	G 1/2" (f)	G 1/2" (f)
Flüssigkeitsan	igkeitsanschluss Eingang		G 3/4" (f)	G 1.1/4" (f)
Flüssigkeitsan	schluss Ausgar	ng	G 1/2" (f)	G 1" (f)
Kugeln für Eingang und Ausgang				
	ssungen (A - B		201 - 160 - 256 - 145 - 100 mm	261 - 200 - 345 - 182 - 130 mm
Schrauben für die Pumpenbefestigung			M8	M10
Verpackung			N° 1 - 0,02 m³	N° 1 - 0,03 m³
Gewicht 🔓			6,3 kg	12 kg

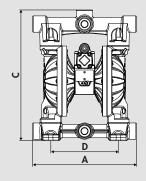

- Bei PTFE-Membranen ist die Durchflussrate um 10 % niedriger.
- Eine Verlagerung während des Zyklus kann durch die Ansaughöhe, die Viskosität der Flüssigkeit, den Luftdruck sowie die Anzahl der Zyklen pro Minute beeinflusst werden.

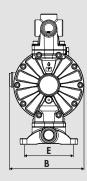
 Die mit der Flüssigkeit in Kontakt stehenden Materialien sowie die Flüssigkeit selber können die Betriebstemperatur beeinflussen.

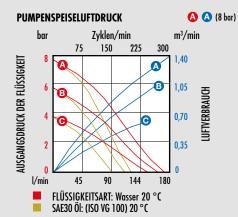
Membranpumpen R. 1:1 zum Transferieren, aus Aluminiumdruckguss, mit schwarzer Kataphorese-Behandlung, die eine Beständigkeit von bis zu 500 Stunden im Salznebel garantiert.

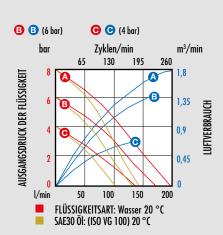
ATEX-Richtlinie

II 2 GD





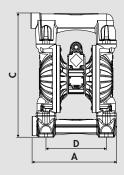

	Modell		AAB-1-9 mit Mehrfach-Ein/Ausgang	AAB-114
Membranen	Membranen Kugeln Kugelsitze		Artikel	Artikel
EPDM	Acetal	Acetal	0E3C3/2666VEAA	0E3C1/3066VEAA
Hytrel®	Hytrel®	Hytrel®	0E3C3/2666VHHH	0E3C1/3066VHHH
NBR	Hytrel®	Hytrel®	0E3C3/2666VNHH	0E3C1/3066VNHH
Santoprene™	Santoprene™	Santoprene™	0E3C3/2666VSSS	0E3C1/3066VSSS
PTFE+Hytrel® *	PTFE	Polypropylen	0E3C3/2666VTTP	0E3C1/3066VTTP
Höchstdruck			8 bar	8 bar
Max. Zyklen p	oro Min.		300 cpm	260 cpm
Liter pro Zyklu	JS **		0,590	0,800 l
Max. Ansaugl	höhe		trockene Säule 5 m - nasse Säule 7,5 m	trockene Säule 5 m - nasse Säule 7,5 m
Max. Größe d	ler pumpbaren	Feststoffe	3 mm	3 mm
Max. Betriebs	temperatur ***		100 °C	100 °C
Lärmpegel			75 dB	75 dB
Max. Luftverb	rauch		1,40 m³/min	1,80 m³/min
Betriebsluftdru			2 - 6 bar	2 - 6 bar
Luftanschluss I	Eingang		G 3/8" (f)	G 3/4" (f)
Luftanschluss A	Ausgang (Scha	lldämpfer)	G 1/2" (f)	G 1" (f)
Flüssigkeitsan	gkeitsanschluss Eingang		4 x G 1" (f)	G 1.1/4" (f)
Flüssigkeitsan	schluss Ausgar	ng	5 x G 1" (f)	G 1.1/4" (f)
Kugeln für Eingang und Ausgang			0	© ©
	ssungen (A - B		280 - 200 - 352 - 182 - 130 mm	286 - 238 - 386 - 199 - 137 mm
Schrauben für	die Pumpenbe	efestigung	M10	M10
Verpackung [N° 1 - 0,03 m³	N° 1 - 0,03 m³
Gewicht 🔓			13 kg	15 kg

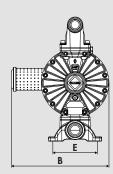

- Bei PTFE-Membranen ist die Durchflussrate um 10 % niedriger.
- Eine Verlagerung während des Zyklus kann durch die Ansaughöhe, die Viskosität der Flüssigkeit, den Luftdruck sowie die Anzahl der Zyklen pro Minute beeinflusst werden.

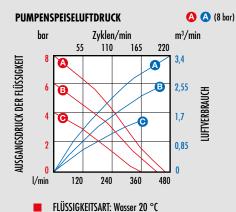
 Die mit der Flüssigkeit in Kontakt stehenden Materialien sowie die Flüssigkeit selber können die Betriebstemperatur beeinflussen.

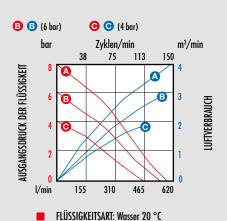
Membranpumpen R. 1:1 zum Transferieren, aus Aluminiumdruckguss, mit schwarzer Kataphorese-Behandlung, die eine Beständigkeit von bis zu 500 Stunden im Salznebel

ATEX-Richtlinie


(€ ⟨€x⟩ || 2 GD





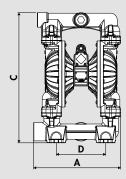

Modell			AAB-112	AAB-2
Membranen	Kugeln	Kugelsitze	Artikel	Artikel
EPDM	Acetal	Acetal	0E3C1/4066VEAA	0E3C1/5066VEAA
Hytrel®	Hytrel®	Hytrel®	0E3C1/4066VHHH	0E3C1/5066VHHH
NBR	Hytrel®	Hytrel®	0E3C1/4066VNHH	0E3C1/5066VNHH
Santoprene™	Santoprene™	Santoprene™	0E3C1/4066VSSS	0E3C1/5066VSSS
PTFE+Hytrel® *	PTFE	Polypropylen	0E3C1/4066VTTP	0E3C1/5066VTTP
Höchstdruck			8 bar	8 bar
Max. Zyklen p	oro Min.		220 cpm	147 cpm
Liter pro Zyklu			2,150	4,150
Max. Ansaugl	nöhe		trockene Säule 5 m - nasse Säule 7,5 m	trockene Säule 5 m - nasse Säule 7,5 m
	er pumpbaren		5,5 mm	6,5 mm
Max. Betriebs	temperatur ***		100 °C	100 °C
Lärmpegel			78 dB	82 dB
Max. Luftverb			3,40 m³/min	4,00 m ³ /min
Betriebsluftdru			2 - 6 bar	2 - 6 bar
Luftanschluss I			G 3/4" (f)	G 3/4" (f)
Luftanschluss A	Ausgang (Scha	lldämpfer)	G 1" (f)	G 1" (f)
Flüssigkeitsan	gkeitsanschluss Eingang		G 2" (f)	G 2.1/2" (f)
Flüssigkeitsan	schluss Ausgan	ng	G 1.1/2" (f)	G 2" (f)
Kugeln für Ein	gang und Aus	gang	O	
Gesamtabmes	sungen (A - B	- C - D - E)	350 - 402 - 514 - 250 - 182 mm	427 - 435 - 616 - 305 - 227 mm
Schrauben für	die Pumpenbe	efestigung	M12	M12
Verpackung [N° 1 - 0,07 m³	N° 1 - 0,12 m³
Gewicht 🔓			21,5 kg	43 kg

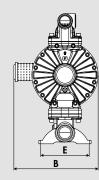
- Bei PTFE-Membranen ist die Durchflussrate um 10 % niedriger.
- Eine Verlagerung während des Zyklus kann durch die Ansaughöhe, die Viskosität der Flüssigkeit, den Luftdruck sowie die Anzahl der Zyklen pro Minute beeinflusst werden.
 Die mit der Flüssigkeit in Kontakt stehenden Materialien sowie die Flüssigkeit selber können die Betriebstemperatur beeinflussen.

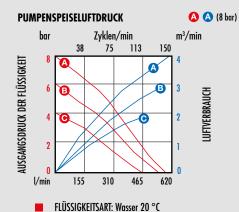
Membranpumpen R. 1:1 zum Transferieren, aus Aluminiumdruckguss, mit schwarzer Kataphorese-Behandlung, die eine Beständigkeit von bis zu 500 Stunden im Salznebel garantiert.

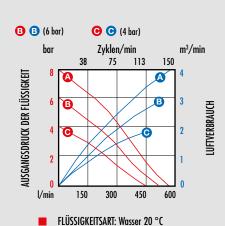
ATEX-Richtlinie

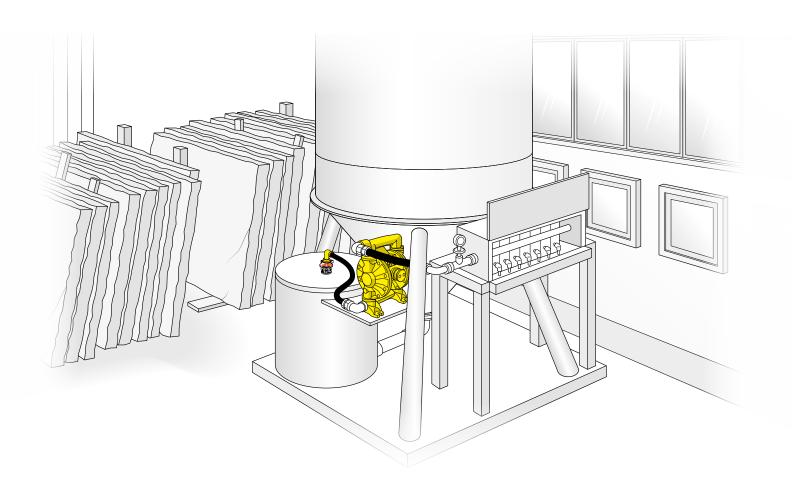
II 2 GD

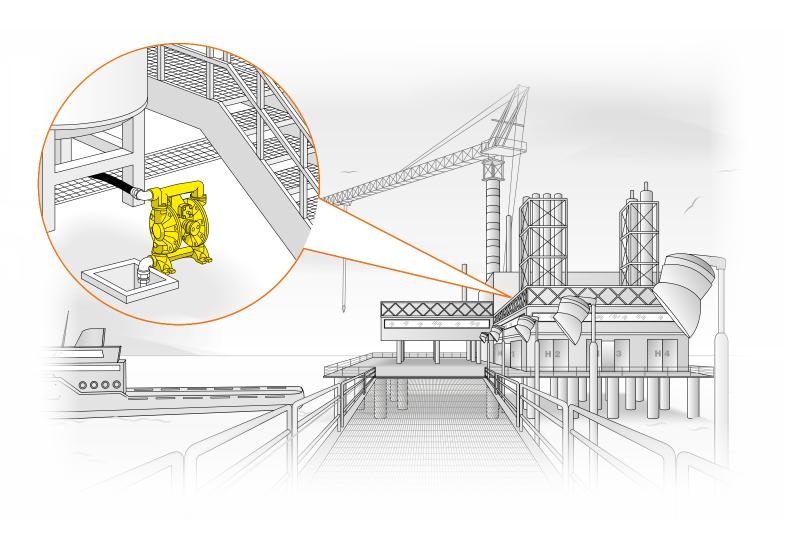




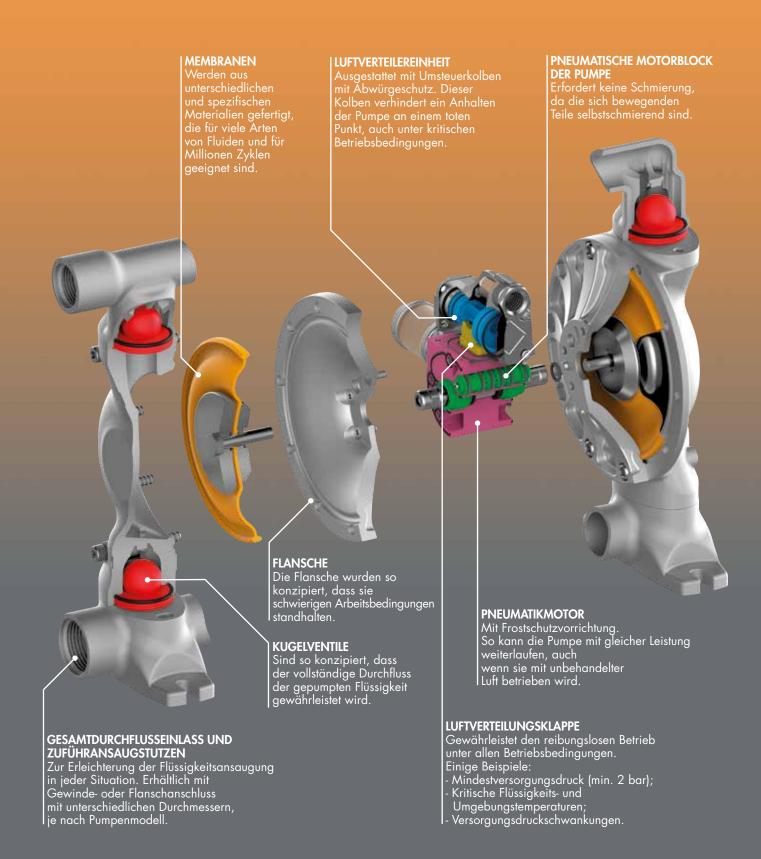

Modell			AAB-2 mit Mehrfach-Ein/Ausgang	AABM-2 modular	
Membranen	Membranen Kugeln Kugelsitze		Artikel	Artikel	
EPDM	Acetal	Acetal	0E3C3/5066VEAA	0E3C6/5066VEAA	
Hytrel®	Hytrel [®]	Hytrel®	0E3C3/5066VHHH	0E3C6/5066VHHH	
NBR	Hytrel®	Hytrel®	0E3C3/5066VNHH	0E3C6/5066VNHH	
Santoprene™	Santoprene™	Santoprene™	0E3C3/5066VSSS	0E3C6/5066VSSS	
PTFE+Hytrel® *	PTFE	Polypropylen	0E3C3/5066VTTP	0E3C6/5066VTTP	
Höchstdruck			8 bar	8 bar	
Max. Zyklen p	oro Min.		147 cpm	147 cpm	
Liter pro Zyklu	JS **		4,150	3,950	
Max. Ansaugl	nöhe		trockene Säule 5 m - nasse Säule 7,5 m	trockene Säule 5 m - nasse Säule 7,5 m	
Max. Größe d	ler pumpbaren	Feststoffe	6,5 mm	6,5 mm	
Max. Betriebs	temperatur ***		100 °C	100 ℃	
Lärmpegel			82 dB	82 dB	
Max. Luftverb	rauch		4,00 m³/min	4,00 m ³ /min	
Betriebsluftdru	ftdruck		2 - 6 bar	2 - 6 bar	
Luftanschluss I	Eingang		G 3/4" (f)	G 3/4" (f)	
Luftanschluss A	Ausgang (Scha	lldämpfer)	G 1" (f)	G 1" (f)	
Flüssigkeitsan	schluss Eingan	g	G 2.1/2" (f)	ANSI 150 - DIN PN 10 - JIS 10K 2" (50 mm)	
Flüssigkeitsan	schluss Ausgan	ng	G 2" (f)	ANSI 150 - DIN PN 10 - JIS 10K 2" (50 mm)	
Kugeln für Eingang und Ausgang			© ©		
	sungen (A - B		449 - 435 - 675 - 255 - 227 mm	410 - 435 - 710 - 305 - 238 mm	
Schrauben für	die Pumpenbe	efestigung	M12	M12	
Verpackung [N° 1 - 0,12 m^{3}	N° 1 - 0,13 m³	
Gewicht 🔓			45 kg	50 kg	


- Bei PTFE-Membranen ist die Durchflussrate um 10 % niedriger.
- Eine Verlagerung während des Zyklus kann durch die Ansaughöhe, die Viskosität der Flüssigkeit, den Luftdruck sowie die Anzahl der Zyklen pro Minute beeinflusst werden.


 Die mit der Flüssigkeit in Kontakt stehenden Materialien sowie die Flüssigkeit selber können die Betriebstemperatur beeinflussen.



EDELSTAHL-MEMBRANPUMPEN AISI 316 MIT ALUMINIUMMOTOR



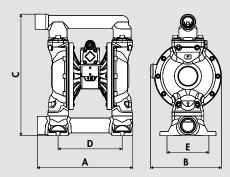
Die ECODORA-Membranpumpen aus Edelstahl AISI 316 mit Aluminiummotor sind vielseitig und einfach zu bedienen und eignen sich für eine Vielzahl von industriellen Anwendungen.

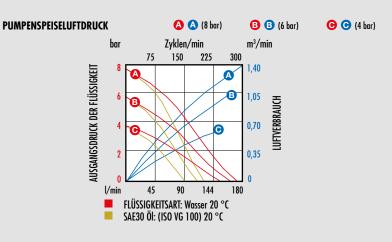
Edelstahl AISI 316 ist ein Material mit hoher mechanischer und thermischer Beständigkeit, ideal für den Einsatz mit korrosiven Stoffen oder in besonders rauen Umgebungen.

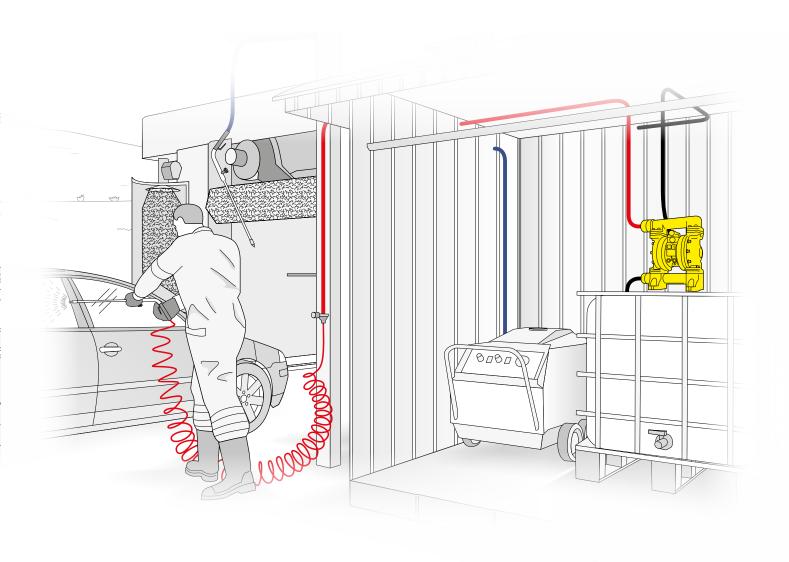
Außerdem können sie dank ihrer Übereinstimmung mit der ATEX-Richtlinie in Anwendungen mit explosionsgefährdeter Atmosphäre eingesetzt werden.

Technische eigenschaften

Die R 1:1 Membranpumpen aus Edelstahl AISI 316 mit Aluminium gewährleisten Zuverlässigkeit und Effizienz.


ATEX-Richtlinie





	Modell		AAB-112		
Membranen	Kugeln	Kugelsitze	Artikel Artikel		
PTFE+Hytrel®	PTFE	Edelstahl AISI 316	0E4C1/26115TTI		
Höchstdruck			8 bar		
Liter pro Zyklu	s *		0,590		
Max. Ansaugh			trockene Säule 5 m - nasse Säule 7,5 m		
Max. Größe d	er pumpbaren	Feststoffe	3 mm		
Max. Betriebst	emperatur **		100 °C		
Lärmpegel			75 dB		
Max. Luftverb	rauch		1,4 m³/min		
Betriebsluftdru	-		3 - 8 bar		
Luftanschluss E	ingang		G 3/8" (f)		
Luftanschluss A	Ausgang (Scha	lldämpfer)	G 1/2" (f)		
Flüssigkeitsans	schluss Eingan	9	G 1.1/4" (f)		
Flüssigkeitsans	schluss Ausgar	ıg	G 1" (f)		
Kugeln für Ein	gang und Aus	gang	0		
Gesamtabmes	sungen (A - B	- C - D - E)	271 - 201 - 345 - 182 - 130 mm		
Schrauben für			M10		
Verpackung [N° 1 - 0,07 m³		
Gewicht 🖰			21,5 kg		

- Eine Verlagerung während des Zyklus kann durch die Ansaughöhe, die Viskosität der Flüssigkeit, den Luftdruck sowie die Anzahl der Zyklen pro Minute beeinflusst werden. Die mit der Flüssigkeit in Kontakt stehenden Materialien sowie die Flüssigkeit selber können die Betriebstemperatur beeinflussen.

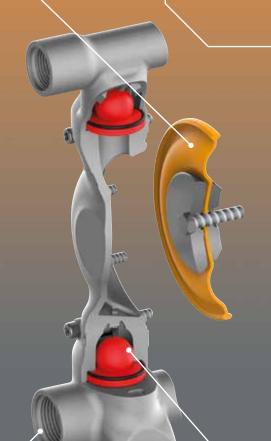
EDELSTAHL-MEMBRANPUMPEN AISI 316 MIT POLYPROPYLENMOTOR

Die ECODORA-Membranpumpen aus Edelstahl AISI 316 mit Polypropylen-Motor sind für den Transfer von besonders aggressiven Flüssigkeiten (Säuren und Laugen) ausgelegt und stellen die ideale Lösung für den Einsatz in zahlreichen, auch sehr aggressiven Arbeitsumgebungen dar.

Technische eigenschaften

MEMBRANEN

Werden aus spezifischen Materialien gefertigt, die für viele Arten von Fluiden und für Millionen Zyklen geeignet


SCHALLDÄMPFER

Schalldämpfer aus Kunststoff mit leistungsstarker Abzugsanlage und Edelstahlgehäuse für aggressive Umgebungen.

LUFTVERTEILUNGSKLAPPE

Gewährleistet den reibungslosen Betrieb unter allen Betriebsbedingungen. Hier

einige Beispiele: - Mindestversorgungsdruck (min. 2 bar); - Kritische Temperaturen bei Fluid und

FROSTSCHUTZVORRICH-TUNG DES PNEUMATIK-MOTORS

Besteht aus Kunststoff. So kann die Pumpe mit gleicher Leistung weiter-laufen, auch wenn sie mit unbehandelter Luft betrieben wird.

PUMPENKÖRPER

Aus Polypropylen mit integrierten Flanschen und Formeinsätzen, um höhere Anzugsdrehmomente zu gewährleisten.

GESAMTDURCHFLUSSEINLASS UND ZUFÜHRANSAUGSTUTZEN

Zur Erleichterung der Flüssigkeitsansaugung in jeder Situation. Erhältlich mit Gewinde- oder Flanschanschluss mit unterschiedlichen Durchmessern, je nach Pumpenmodell.

KUGELVENTILE

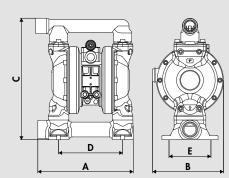
Sind so konzipiert, dass der vollständige Durchfluss der gepumpten Flüssigkeit gewährleistet wird.

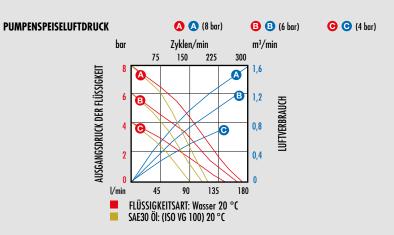
PNEUMATISCHE MOTORBLOCK DER

PUMPE
Erfordert keine
Schmierung, da die sich bewegenden Teile selbstschmierend sind.

LUFTVERTEILEREINHEITAusgestattet mit
Umsteuerkolben mit
Abwürgeschutz. Dieser Kolben verhindert ein Anhalten der Pumpe an einem toten Punkt, auch unter kritischen Betriebsbedingungen.

Die R 1:1 Membranpumpen aus Edelstahl AISI 316 mit Polypropylenmotor gewährleisten Zuverlässigkeit und Effizienz.


ATEX-Richtlinie



Modell			PPIB-1		
Membranen	Kugeln	Kugelsitze	Artikel		
PTFE+Hytrel®	PTFE	Edelstahl AISI 316	0E2A1/26775TTI		
Höchstdruck			8 bar		
Liter pro Zyklu	JS *		0,540		
Max. Ansaugh	höhe		trockene Säule 5 m - nasse Säule 7,5 m		
Max. Größe d	ler pumpbaren	Feststoffe	3 mm		
Max. Betriebs	temperatur **		65 °C		
Lärmpegel			78 dB		
Max. Luftverb	rauch		1,1 m³/min		
Betriebsluftdru	ıck		3 - 8 bar		
Luftanschluss	Eingang		G 3/8" (f)		
Luftanschluss	Ausgang (Scho	ılldämpfer)	G 3/4" (f)		
Flüssigkeitsan	schluss Eingan	g	G 1.1/4" (f)		
Flüssigkeitsan	schluss Ausgar	ng	G 1" (f)		
Kugeln für Ein	gang und Aus	gang			
Gesamtabmes	sungen (A - B	- C - D - E)	271 - 201 - 345 - 182 - 130 mm		
Schrauben für die Pumpenbefestigung		efestigung	M10		
Verpackung [N° 1 - 0,03 m³		
Gewicht 🖺			24 kg		

- Eine Verlagerung während des Zyklus kann durch die Ansaughöhe, die Viskosität der Flüssigkeit, den Luftdruck sowie die Anzahl der Zyklen pro Minute beeinflusst werden. Die mit der Flüssigkeit in Kontakt stehenden Materialien sowie die Flüssigkeit selber können die Betriebstemperatur beeinflussen.

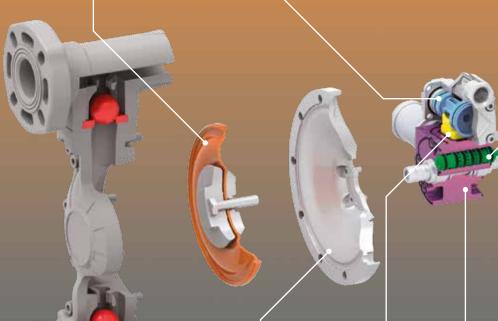
MEMBRANPUMPEN AUS ALUMINIUM UND POLYPROPYLEN

ECODORA Polypropylen-Membranpumpen mit Aluminium motor sind für den Transfer von besonders aggressiven Flüssigkeiten (Säuren und Laugen) ausgelegt und stellen die ideale Lösung für den Einsatz in zahlreichen, auch sehr aggressiven Arbeitsumgebungen dar. Die Schrauben dieser Pumpen sind vollständig aus Edelstahl gefertigt, um Qualität, Langlebigkeit und ein besseres ästhetisches Design des Produkts zu gewährleisten. Außerdem können sie dank ihrer Konformität mit der ATEX-Richtlinie in explosionsgefährdeten Bereichen eingesetzt werden.

Unsere technische Abteilung steht Ihnen jederzeit zur Verfügung, um Sie bei der Auswahl der Materialien von Membranen, Kugeln und Sitzen zu unterstützen, die mit dem zu pumpenden Medium kompatibel sind.

Technische eigenschaften

MEMBRANEN


Werden aus unterschiedlichen und spezifischen Materialien gefertigt, die für viele Arten von Fluiden und für Millionen Zyklen geeignet sind.

LUFTVERTEILEREINHEIT

Ausgestattet mit Umsteuerkolben mit Abwürgeschutz. Dieser
Kolben verhindert ein Anhalten
der Pumpe an einem toten
Punkt, auch unter kritischen
Betriebsbedingungen.

PNEUMATISCHE MOTORBLOCK **DER PUMPE**

da die sich bewegenden Teile selbstschmierend sind.

FLANSCHE

Die Flansche wurden so konzipiert, dass sie schwierigen Arbeitsbedingungen standhalten.

PNEUMATIKMOTOR

Mit Frostschutzvorrichtung. So kann die Pumpe mit gleicher Leistung weiterlaufen, auch wenn sie mit unbehandelter Luft betrieben wird.

GESAMTDURCHFLUSSEINLASS UND ZUFÜHRANSAUGSTUTZEN

ZUFUHRANSAUGSTUTZEN
Zur Erleichterung der
Flüssigkeitsansaugung in jeder
Situation. Erhältlich mit Gewinde- oder
Flanschanschluss mit unterschiedlichen
Durchmessern, je nach Pumpenmodell.
Ein Ring aus Edelstahl AISI 316 verstärkt
Idas Gewinde (Ausführungen 1/2").

KUGELVENTILE

KUGELVENTILE
Sind so konzipiert,
dass der vollständige
Durchfluss der gepumpten
Flüssigkeit gewährleistet
wird. Die Kugelsitze sind
aus Edelstahl AISI 316 (Ausführungen 1") oder Edelstahl AISI 316 und Polypropylen (Ausführung 1/2").

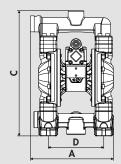
LUFTVERTEILUNGSKLAPPE

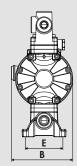
Gewährleistet den reibungslosen Betrieb unter allen Betriebsbedingungen. Einige Beispiele:

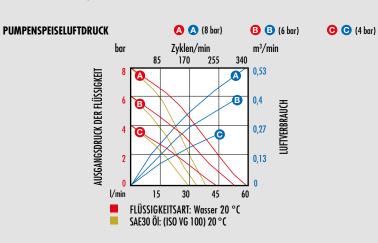
- Mindestversorgungsdruck (min. 2 bar); Kritische Flüssigkeits- und
- Umgebungstemperaturen; Versorgungsdruckschwankungen.

Membranpumpen R. 1:1 für die Übertragung von Fluiden, hergestellt aus eingespritztem Form-Polypropylen und Motor aus Aluminium. Sie gewährleisten einen langfristigen und zuverlässigen Betrieb auch unter extremen Bedingungen und mit aggressiven Fluiden.

ATEX-Richtlinie






	Mod	ell	APPB-12 mit Mehrfach-Ein/Ausgang	APPB-12 doppelter Eingang/Mehrfach Ausgang	
Membranen	3 3 3 1		Artikel	Artikel	
EPDM	Acetal	Polypropylen und AISI 316	0E2B3/16117EA5	0E2B8/16117EA5	
Hytrel®	Hytrel®	Polypropylen und AISI 316	0E2B3/16117HH5	0E2B8/16117HH5	
NBR	Hytrel®	Polypropylen und AISI 316	0E2B3/16117NH5	0E2B8/16117NH5	
Santoprene™	Santoprene™	Polypropylen und AISI 316	0E2B3/16117SS5	0E2B8/16117SS5	
PTFE+Hytrel® *	PTFE	Polypropylen und AISI 316	0E2B3/16117TT5	0E2B8/16117TT5	
Höchstdruc	k		8 bar	8 bar	
Max. Zykle	n pro Min.		330 cpm	330 cpm	
Liter pro Zy	klus **		0,188	0,188	
Max. Ansa			trockene Säule 4,5 m - nasse Säule 7,5 m	trockene Säule 4,5 m - nasse Säule 7,5 m	
		baren Feststoffe	1,5 mm	1,5 mm	
Max. Betrie	bstemperat	ur ***	65 °C	65 ℃	
Lärmpegel			75 dB	75 dB	
Max. Luftve	Luftverbrauch		0,50 m³/min	0,50 m³/min	
Betriebsluft			2 - 6 bar	2 - 6 bar	
Luftanschlu			G 3/8" (f)	G 3/8" (f)	
Luftanschlu	ss Ausgang	(Schalldämpfer)	G 1/2" (f)	G 1/2" (f)	
Flüssigkeits	keitsanschluss Eingang		G 3/4" (f) (G 1" (f) für Trommel	doppelter Eingang G 3/4" (f)	
Flüssigkeits	anschluss A	usgang	G 1/2" (f)	G 1/2" (f)	
Kugeln für	Eingang und	d Ausgang		8	
		A - B - C - D - E)	220 - 160 - 327 - 145 - 100 mm	220 - 160 - 327 - 145 - 100 mm	
Schrauben	für die Pum	penbefestigung	M8	M8	
Verpackung			N° 1 - 0,02 m³	N° 1 - 0,02 m³	
Gewicht	<u> </u>		5,8 kg	5,7 kg	

- Bei PTFE-Membranen ist die Durchflussrate um 10 % niedriger.
- Eine Verlagerung während des Zyklus kann durch die Ansaughöhe, die Viskosität der Flüssigkeit, den Luftdruck sowie die Anzahl der Zyklen pro Minute beeinflusst werden.

 Die mit der Flüssigkeit in Kontakt stehenden Materialien sowie die Flüssigkeit selber können die Betriebstemperatur beeinflussen.

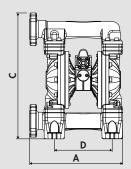
Diese Membranpumpen mit Durchflussverhältnis 1:1 für den Flüssigkeitstransfer sind aus geformtem Polypropylen und einem Motor aus Aluminium hergestellt. Diese Versionen verfügen über einen 1"-Flansch der mittels eines, in der Sektion "Zubehör" erhältlichen, aus Edelstahl AISI 304 gefertigten Gegenflanschs mit der Anlage verbunden werden kann.

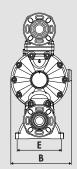
ATEX-Richtlinie

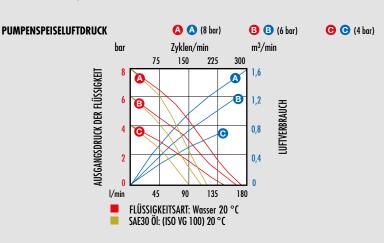
(€ ⟨Ex⟩ ॥ 3 GD

Hinweis: Die in den unten stehenden Grafiken angegebene maximale Durchflussrate wurde in Labortests erreicht.

mit flansch 1"

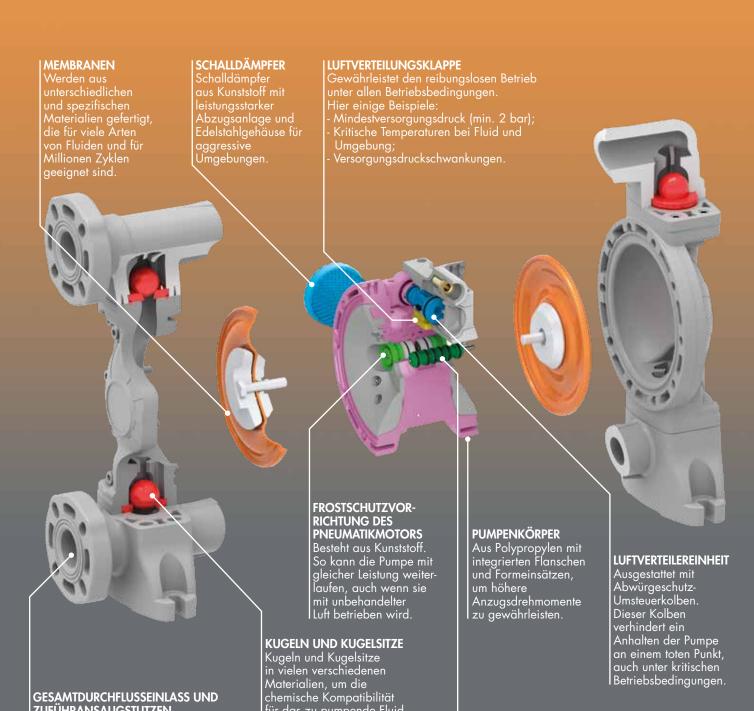

mit flansch 1"




Modell			APPB-1	APPB-1 doppelter Eingang
Membranen	3 3		Artikel	Artikel
EPDM	Acetal	Edelstahl AISI 316	0E2B4/26117EAI	0E2B7/26117EAI
Hytrel®	Hytrel®	Edelstahl AISI 316	0E2B4/26117HHI	0E2B7/26117HHI
NBR	1		0E2B4/26117NHI	0E2B7/26117NHI
Santoprene™	Santoprene™	Edelstahl AISI 316	0E2B4/26117SSI	0E2B7/26117SSI
PTFE+Hytrel®*	PTFE	Edelstahl AISI 316	0E2B4/26117TTI	0E2B7/26117TTI
Höchstdruc	k		8 bar	8 bar
Max. Zykle	n pro Min.		300 cpm	300 cpm
Liter pro Zy	klus **		0,590	0,590
Max. Ansa	ughöhe		trockene Säule 5 m - nasse Säule 7,5 m	trockene Säule 5 m - nasse Säule 7,5 m
Max. Größ	e der pumpl	oaren Feststoffe	3 mm	3 mm
Max. Betrie	bstemperat	ur ***	65 °C	65 °C
Lärmpegel			75 dB	75 dB
Max. Luftve	erbrauch		1,60 m³/min	1,60 m³/min
Betriebsluft	druck		2 - 6 bar	2 - 6 bar
Luftanschlu			G 3/8" (f)	G 3/8" (f)
Luftanschlu	ss Ausgang	(Schalldämpfer)	G 1/2" (f)	G 1/2" (f)
Flüssigkeits	anschluss Ei	ngang	ANSI 150 - DIN PN 10 - JIS 10K 1" (25 mm) Neigung nach IG 1 1/4" G	Doppelter Eingang ANSI 150 - DIN PN 10 - JIS 10K 1" (25 mm) Neigung nach IG 1 1/4" G
Flüssigkeits	anschluss A	usgang	ANSI 150 - DIN PN 10 - JIS 10K 1" (25 mm) Neigung nach IG 1 1/4" G	ANSI 150 - DIN PN 10 - JIŠ 10K 1" (25 mm) Neigung nach IG 1 1/4" G
Kugeln für Eingang und Ausgang				
		A - B - C - D - E)	305 - 200 - 420 - 191 - 130 mm	357 - 200 - 420 - 191 - 130 mm
Schrauben	für die Pum	penbefestigung	M10	M10
Verpackung			N° 1 - 0,03 m³	N° 1 - 0,03 m³
Gewicht)		7 kg	12,1 kg

- Bei PTFE-Membranen ist die Durchflussrate um 10 % niedriger.
- Eine Verlagerung während des Zyklus kann durch die Ansaughöhe, die Viskosität der Flüssigkeit, den Luftdruck sowie die Anzahl der Zyklen pro Minute beeinflusst werden.

 Die mit der Flüssigkeit in Kontakt stehenden Materialien sowie die Flüssigkeit selber können die Betriebstemperatur beeinflussen.


MEMBRANPUMPEN AUS POLYPROPYLEN

Die vollständig aus Polypropylen gefertigten ECODORA-Membranpumpen sind für den Transfer von besonders aggressiver Flüssigkeiten (Säuren und Laugen) ausgelegt und stellen die ideale Lösung für den Einsatz in zahlreichen, auch sehr aggressiven Arbeitsumgebungen dar.

Die Schrauben dieser Pumpen sind vollständig aus Edelstahl gefertigt, um Qualität, Langlebigkeit und ein besseres ästhetisches Design des Produkts zu gewährleisten.

Technische eigenschaften

für das zu pumpende Fluid zu gewährleisten. Leicht zu reinigen oder auszutauschen, je nach Anforderung. Die Kugelsitze sind aus Edelstahl

AISI 316 (Ausführungen 1") oder Edelstahl AISI 316 und Polypropylen (Ausführung 1/2").

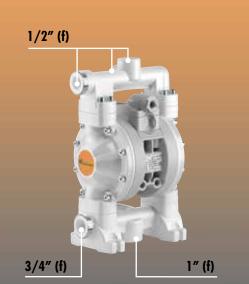
PNEUMATISCHE MOTORBLOCK DER

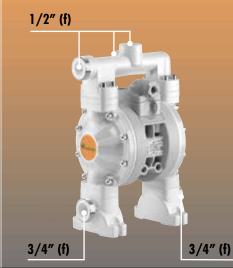
Schmierung, da die sich bewegenden Teile selbstschmierend sind.

Erfordert keine

PUMPE

GESAMTDURCHFLUSSEINLASS UND

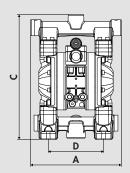

Zur Erleichterung der Flüssigkeitsansaugung in jeder Situation. Erhältlich mit Gewinde- oder Flanschanschluss mit unterschiedlichen Durchmessern, je

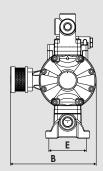

nach Pumpenmodell. Ein Ring aus Edelstahl AISI 316 verstärkt das Gewinde (Ausführungen 1/2").

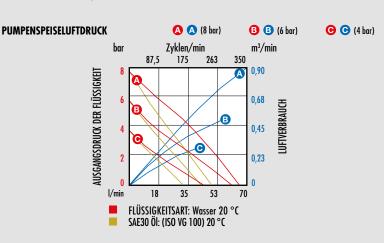
ZUFÜHRANSAUGSTUTZEN

Betriebsbedingungen.

Vollständig aus
Polypropylen hergestellte
Membranpumpen
R. 1:1 für die
Übertragung von Fluiden
werden für den Einsatz mit Industrieflüssigkeiten (auch aggressive Flüssigkeiten) und in Umgebungen mit aggressiver Atmosphäre empfohlen.



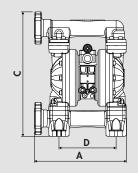


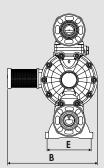

Modell			PPB-12 mit Mehrfach-Ein/Ausgang	PPB-12 doppelter Eingang/Mehrfach Ausgang
Membranen	Kugeln	Kugelsitze	Artikel Artikel	Artikel
EPDM	Acetal	Polypropylen und AISI 316	0E2A3/1677EA5	0E2A8/1677EA5
Hytrel®	Hytrel®	Polypropylen und AISI 316	0E2A3/1677HH5	0E2A8/1677HH5
NBR	Hytrel®	Polypropylen und AISI 316	0E2A3/1677NH5	0E2A8/1677NH5
Santoprene™	Santoprene™	Polypropylen und AISI 316	0E2A3/1677SS5	0E2A8/1677SS5
PTFE+Hytrel®*	PTFE	Polypropylen und AISI 316	0E2A3/1677TT5	0E2A8/1677TT5
Höchstdruck			8 bar	8 bar
Max. Zyklen pro Min.			350 cpm	350 cpm
Liter pro Zyklus **			0,188	0,188
Max. Ansaughöhe			trockene Säule 4,5 m - nasse Säule 7,5 m	trockene Säule 4,5 m - nasse Säule 7,5 m
Max. Größe der pumpbaren Feststoffe			1,5 mm	1,5 mm
Max. Betriebstemperatur ***			65 °C	65 °C
Lärmpegel			76 dB	76 dB
Max. Luftverbrauch			0,89 m³/min	0,89 m³/min
Betriebsluftdruck			2 - 6 bar	2 - 6 bar
Luftanschluss Eingang			G 3/8" (f)	G 3/8" (f)
Luftanschluss Ausgang (Schalldämpfer)			G 3/4" (f)	G 3/4" (f)
Flüssigkeitsanschluss Eingang			G 3/4" (f) (G 1" (f) für Trommel)	doppelter Eingang G 3/4" (f)
Flüssigkeitsanschluss Ausgang			G 1/2" (f)	G 1/2" (f)
Kugeln für Eingang und Ausgang				
Gesamtabmessungen (A - B - C - D - E)			208 - 220 - 326 - 145 - 100 mm	220 - 220 - 326 - 145 - 100 mm
Schrauben für die Pumpenbefestigung			M8	M8
Verpackung			N° 1 - 0,02 m^{3}	N° 1 - 0,02 m³
Gewicht 👸			5,8 kg	5,8 kg

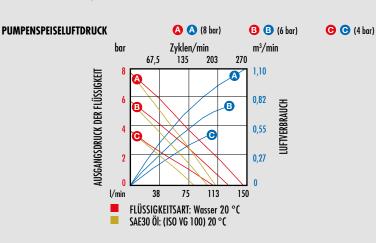
- Bei PTFE-Membranen ist die Durchflussrate um 10 % niedriger.
- Eine Verlagerung während des Zyklus kann durch die Ansaughöhe, die Viskosität der Flüssigkeit, den Luftdruck sowie die Anzahl der Zyklen pro Minute beeinflusst werden.

 Die mit der Flüssigkeit in Kontakt stehenden Materialien sowie die Flüssigkeit selber können die Betriebstemperatur beeinflussen.

Die Reihe der vollständig aus Polypropylen hergestellten 1"-Membranpumpen R. 1:1 für die Fluidübertragung wurde für den Einsatz mit Industrieflüssigkeiten, auch aggressiven, sowie das Arbeiten in korrosiver Atmosphäre konzipiert und bietet eine unbestritten höhere Kapazität.






Modell			PPB-1	PPB-1 doppelter Eingang
Membranen	Kugeln	Kugelsitze	Artikel	Artikel
EPDM	Acetal	Edelstahl AISI 316	0E2A4/2677EAI	0E2A7/2677EAI
Hytrel®	Hytrel®	Edelstahl AISI 316	0E2A4/2677HHI	0E2A7/2677HHI
NBR	Hytrel®	Edelstahl AISI 316	0E2A4/2677NHI	0E2A7/2677NHI
Santoprene™	Santoprene™	Edelstahl AISI 316	0E2A4/2677SSI	0E2A7/2677SSI
PTFE+Hytrel®*	PTFE	Edelstahl AISI 316	0E2A4/2677TTI	0E2A7/2677TTI
Höchstdruck			8 bar	8 bar
Max. Zyklen pro Min.			270 cpm	270 cpm
Liter pro Zyklus **			0,540	0,540
Max. Ansaughöhe			trockene Säule 5 m - nasse Säule 7,5 m	trockene Säule 5 m - nasse Säule 7,5 m
Max. Größe der pumpbaren Feststoffe			3 mm	3 mm
Max. Betriebstemperatur ***			65 °C	65 °C
Lärmpegel			78 dB	78 dB
Max. Luftverbrauch			1,1 m ³ /min	1,1 m ³ /min
Betriebsluftdruck			2 - 6 bar	2 - 6 bar
Luftanschluss Eingang			G 3/8" (f)	G 3/8" (f)
Luftanschluss Ausgang (Schalldämpfer)			G 3/4" (f)	G 3/4" (f)
Flüssigkeitsanschluss Eingang			ANSI 150 - DIN PN 10 - JIS 10K 1" (25 mm) Neigung nach IG 1 1/4" G	doppelter Eingang ANSI 150 - DIN PN 10 - JIS 10K 1" (25 mm) Neigung nach IG 1 1/4" G
Flüssigkeitsanschluss Ausgang			ANSI 150 - DIN PN 10 - JIS 10K 1" (25 mm) Neigung nach IG 1 1/4" G	ANSI 150 - DIN PN 10 - JIS 10K 1" (25 mm) Neigung nach IG 1 1/4" G
Kugeln für Eingang und Ausgang				
Gesamtabmessungen (A - B - C - D - E)			305 - 300 - 420 - 191 - 130 mm	357 - 300 - 420 - 191 - 130 mm
Schrauben für die Pumpenbefestigung			M10	M10
Verpackung 👚			N° 1 - 0,03 m³	N° 1 - 0,03 m³
Gewicht 👸			9,6 kg	9,6 kg

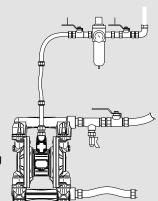
- Bei PTFE-Membranen ist die Durchflussrate um 10 % niedriger.
- Eine Verlagerung während des Zyklus kann durch die Ansaughöhe, die Viskosität der Flüssigkeit, den Luftdruck sowie die Anzahl der Zyklen pro Minute beeinflusst werden.

 * Die mit der Flüssigkeit in Kontakt stehenden Materialien sowie die Flüssigkeit selber können die Betriebstemperatur beeinflussen.

ZUBEHÖR FÜR MEMBRANPUMPEN

Art. 0E37819 Druckregler

mit Kondensatabscheidefilter


und Manometer, - Anschlüsse IG 3/8" G x IG 3/8" G für die Anwendung am Anfang der Druckluftzuführleitung der Pumpe.

Art. 0E37815

Druckregler

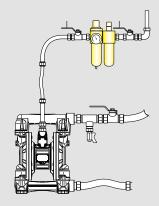
mit Kondensatabscheidefilter

und Manometer, - Anschlüsse IG 1/2" G x IG 1/2" G für die Anwendung am Anfang der Druckluftzuführleitung der Pumpe.

Art. 0E37821

Druckregler mit

Kondensatabscheidefilter, Öler und Manometer.

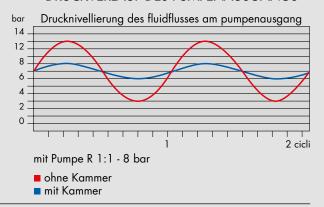

- Anschlüsse IG 3/8" G x IG 3/8" G. Das System gewährleistet, dass die Zuführluft der Pumpe frei von Kondenswasser ist.

Art. 0E37817

Druckregler

mit Kondensatabscheidefilter, Öler und Manometer.

- Anschlüsse IG 1/2" G x IG 1/2" G. Das System gewährleistet, dass die Zuführluft der Pumpe frei von Kondenswasser ist.



Art. 0E38097

Flussreglerkammer IG 3/4" x IG 3/4" ausgestattet mit:

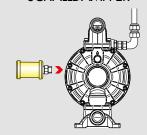
- Einwegeventil beseitigt plötzliche Druck- veränderungen und sichert so einen regelmäßigen Durchfluss
- geeignet für R 1:1 3:1 5:1
- Höchstdruck 100 bar

DRUCKVERLAUF DES PUMPENAUSGANGS

Art. KR4506

Mit Zange ausgestattetes Erdungskabel.

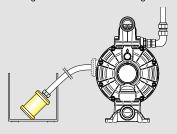
In Räumen mit Explosionsgefahr (d.h. mit potentiell explosiver Atmosphäre, entsprechend der Richtlinie ATEX) ist das Erden sowohl der Pumpe als auch der anderen Apparate im Arbeitsbereich obligatorisch.

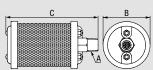

ZUBEHÖR FÜR MEMBRANPUMPEN

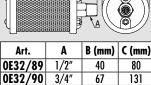
Schalldämpfer verringern den wahrgenommenen Lärmpegel merklich. Sie verringern den Lärmpegel des Pumpenluftausgangs und bringen ihn so auf ein angenehmes Niveau. Ausserdem optimieren und steigern sie die Pumpenleistung.

Art. 0E32/89 Schalldämpfer AG 1/2" G mit erhöhter Leistung, geeignet für 1/2"- und 1"-Pumpen mit Aluminiummotor.

STANDARDINSTALLATION SCHALLDÄMPFER


Art. 0E32/90 Schalldämpfer AG 3/4" G aus Polypropylen, geeignet für 1/2"- und 1"-Pumpen mit Kunststoffmotor.


FERNINSTALLATION SCHALLDÄMPFER


Beim Pumpen von gefährlichen Fluiden müssen Sie den Schalldämpfer in einem sicheren, von der Arbeitsumgebung entfernten Bereich anbringen.

Art. 0E32/91 Schalldämpfer AG 1" G für Pumpen 1 1/4" 1.1/2" und 2" mit Aluminiummotor. Empfohlen bei sehr staubigen Umgebungen.

0E32/91

0E32/92

67

100

64

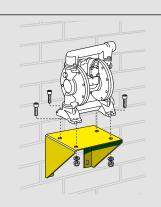
131

220

131

Art. 0E32/92 Schalldämpfer AG 1" G für Pumpen 1 1/4", 1.1/2" und 2" mit Aluminiummotor.

Wandhalterung aus lackiertem Stahl


für die Wandmontage von Membranpumpen 1/2" und 3/4" und Schrauben für die Pumpenbefestigung M8.

Wandhalterung aus lackiertem Stahl

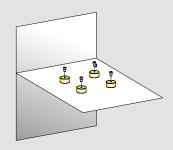
für die Wandmontage von Membranpumpen 1" und 1 1/4" und Schrauben für die Pumpenbefestigung M10.

ZUBEHÖR FÜR MEMBRANPUMPEN

Art. KR33/90

Vibrationsschutzset aus SBR-Gummi ø 30 x H. 20 Gewinde AG/AG - M8 für 1/2" und 3/4" - Membranpumpen. Reduziert die Vibrationen bei schweren Anwendungen.

Art. KR33/91


Vibrationsschutzset aus SBR-Gummi ø $50 \times H$. 30 Gewinde AG/AG - M10 für 1" und 1 1/4" - Membranpumpen. Reduziert die Vibrationen bei schweren Anwendungen.

Art. KR33/88

Vibrationsschutzset aus SBR-Gummi Ø 30 x H 20 Gewinde IG/IG - M12 für 1.1/2" - und 2"-Membranpumpen. Reduziert die Vibrationen bei schweren Anwendungen.

Art. 0E32/95

1"-Flansch aus Edelstahl AISI 304, geeignet für den Anschluss der Pumpe an die Anlage. Innengewinde 1" G.

Art. 0E32/96 *

1''-Flansch aus Polypropylen, geeignet für den Anschluss der Pumpe an die Anlage. Innengewinde 1'' G.

Art. 0E32/97

2"-Flansch aus Aluminium, geeignet für den Anschluss der Pumpe an die Anlage. Innengewinde 2" G.

* Zubehör nur für geflanschte Membranpumpen

Art. 0E33574

Schlauchhalter ø 1.3/4" (47,5 mm) mit Anschluss AG 1.1/4" G.

Art. 0E33575

Schlauchhalter ø 1.3/4" (47,5 mm) mit Anschluss AG 1.1/2" G.

Art. 0E33576

Schlauchhalter ø 1.3/4" (47,5 mm) mit Anschluss AG 2" G.

Art. 0E38080

Schlauchhalter ø 1.1/4" (31,4 mm) mit Anschluss AG 3/4" G.

Art. 0E38081

Schlauchhalter ø 1.1/4" (31,4 mm) mit Anschluss AG 1" G.

Art. 0E38082

Schlauchhalter ø 1.1/4" (31,4 mm) mit Anschluss AG 1.1/4" G.

Art. 0E33571

Schlauchhalter ø 3/4" (22 mm) mit Anschluss AG 3/4" G aus Edelstahl AISI 304.

Art. 0E38083

Schlauchhalter ø 3/4" (22 mm)

mit Anschluss AG 1" G aus Edelstahl AISI 304.

ZUBEHÖR FÜR MEMBRANPUMPEN

Art. 0E38026 Ansaugschlauch 2 m - Ø 30,5 x Ø 39 mm.

Art. 0E38028 Ansaugschlauch 1 m- Ø 30,5 x Ø 39 mm.

Art. 0E33584 Ansaugschlauch 2 m- Ø 45 × Ø 57 mm.

Art. 0E33434 Gewinderingadapter für Pumpe mit ø 34 mm
Ansaugschlauch.

Art. 0E33426 Ansaugschlauch 2 m - Ø 19,5 x Ø 27 mm..

Art. 0E10/15 Gewinderingadapter für Pumpe mit ø 53 mm
Ansaugschlauch.

Art. 0E33581 Ansaugrohr ø 34 mm - Länge 940 mm.

Art. 0E33582 Ansaugrohr ø 34 mm - Länge 1240 mm.

Art. 0E33586 Ansaugrohr ø 53 mm - Länge 940 mm.

Art. 0E33588 Ansaugrohr ø 53 mm - Länge 1240 mm.

Art. 0E33594 Ansaugrohr ø 34 mm - Länge 1460 mm.

Art. 0E33569 Edelstahl-Ansaugschlauch ø 34 mm - Länge 1240 mm gerader Ausgang, ohne Drehdurchführung.

Art. 0E33579 Edelstahl-Ansaugschlauch Ø 34 mm

- Länge 940 mm

Art. 0E33580 Edelstahl-Ansaugschlauch Ø 34 mm

- Länge 1240 mm

Art. 0E33596Edelstahl-Ansaugschlauch ø 34 mm

- Länge 1460 mm

Art. 0E33583 Ansaugrohr ø 34 mm - Länge 940 mm

Art. 0E33585 Ansaugrohr ø 34 mm - Länge 1240 mm

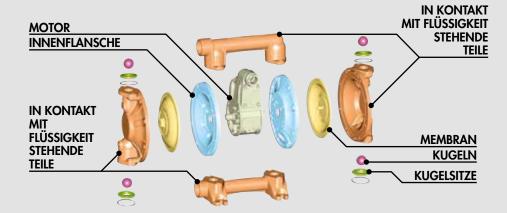
Art. 0E33587 Ansaugrohr ø 53 mm - Länge 940 mm

Art. 0E33589 Ansaugrohr ø 53 mm - Länge 1240 mm

Art. 0E33595 Ansaugrohr ø 34 mm - Länge 1460 mm

Art. 0E33577 Starrer Edelstahl-Ansaugschlauch ø 34 mm - Länge 940 mm

Art. 0E33578 Starrer Edelstahl -Ansaugschlauch ø 34 mm - Länge 1260 mm


Art. 0E33597 Starrer Edelstahl -Ansaugschlauch ø 34 mm - Länge 1460 mm

PUMPENKONFIGURATION

Explosionsansicht der Pumpe, mit den wesentlichen Komponenten, zur erleichterten Auswahl einer kundenspezifischen Konfiguration.

In der Tabelle sind die verfügbaren Pumpenkonfigurationen aufgelistet, um es dem Anwender zu ermöglichen, seinen eigenen, personalisierten Code zu erstellen, wenn das im Prospekt angegebene Modell die spezifischen Anforderungen nicht erfüllt.

Abhängig von den Pumpenmaterialien sind zwei Arten von ATEX-Konformitäten erhältlich: für Zone 1 oder für Zone 2.

II 3GD (für Zone 2) II 2GD (für Zone 1)

Die Ventilsitze müssen mit den Kugeln gekoppelt werden, um den korrekten Verschluss zu gewährleisten. Auch die Kugeln selbst müssen in einem für die Art des Fluids, mit dem sie in Kontakt kommen, geeignetem Material hergestellt werden.

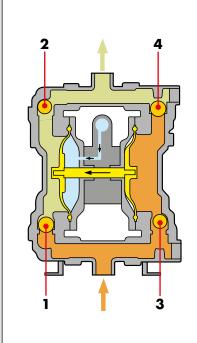
Sie öffnen und schließen den Fluiddurchfluss durch die Pendelbewegung der Mitläuferplatten. Das Material, aus denen sie bestehen, muss mit der zu pumpenden Flüssigkeit kompatibel sein.

Sie können mit Gewinde (G/BSP) ausgeführt werden oder mit Flansch, einzeln, mehrfach und modular.

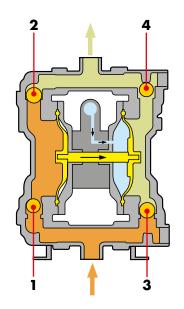
Sie sind die einzigen elastischen Teile der Pumpe, die das Fluid mit ihrer Bewegung ansaugen und pumpen. Das Material, aus denen sie bestehen, muss so ausgewählt werden, dass die korrekte chemische Kompatibilität mit dem zu pumpenden Fluid erreicht wird.

Er legt den Innendurchmesser des Stutzens fest. Dies sind alle starren Teile, wie die externen Flansche, die Stutzen und Muffen, die permanent in Kontakt mit dem zu pumpenden Fluid sind. Erhältlich in verschiedenen Materialien, abhängig von der Flüssigkeitsart.

Dies ist das Herz der Pumpe und verantwortlich für die Pendelbewegung, die den Flüssigkeitsfluss erzeugt.


Diese sind nicht in Kontakt mit dem gepumpten Fluid, sondern nur mit der Motordruckluft.

MATERIALIEN UND ATEX-AUSFÜHRUNGEN	STUTZEN FÜR EIN-UND AUSGANG	EINGANGS-	MATERIALARTEN					
		DURCH- MESSER	MOTOR	INNENFLAN- SCHE	IN KONTAKTMIT FLÜSSIGKEIT STEHENDE TEILE	MEMBRAN	KUGELN	KUGELSITZE
OE2B = Polypropylen für Zone 2	1/ = Gewindeanschluss G	16 = 1/2"	1 = Vernickeltes		1 = Vernickeltes	E = EPDM	A = Acetal	A = Acetal
OE3C = Aluminium für Zone 1	3/ = Mehrfach-Gewindea. G	26 = 1"	Aluminium		Aluminium	H = Hytrel®	H = Hytrel®	H = Hytrel®
OE2A = Polypropylen	4/ = Anschluss mit Flansch	30 = 1.1/4"	6 = Aluminium mit	6 = Aluminium mit Kataphorese 5 = Edelsi	5 = Fdelstahl AISI 316	N = NBR	S = Santoprene™	P = Polypropylen
OE4C = Edelstahl AISI 316	6/ = Modularer Mehrfach-	40 = 1.1/2"	Kataphorese			S = Santoprene™	T = PTFE	S = Santoprene™
für Zone 1	Anschluss mit Flansch	50 = 2"			7 = Polypropylen	T = PTFE +		1 = Edelstahl
	7/ = Anschluss mit Flansch		7 = Polypropylen (Motor und Flansch sind ein einziger Körper)		V = Aluminium mit	Hytrel [®]		AISI 316
	und Doppeleingang		- Sind ein einziger Korper/		Kataphorese			5 = Polypropylen
	8/ = Doppeleingang G Gewindeanschluss							und Edelstahl
								AISI 316


BEISPIEL 0E3C1/16111EAA								
0E3C = Aluminium für Zone 1	1 / = Gewindeanschluss G	16 = 1/2"	1 = Vernickeltes Aluminium	1 = Vernickeltes Aluminium	1 = Vernickeltes Aluminium	E = EPDM	A = Acetal	A = Acetal

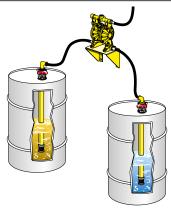
INSTALLATION UND BETRIEB

EINFACH UND EFFEKTIV (VERHÄLTNIS 1:1)

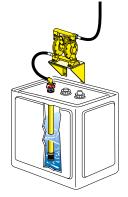
Der Absperrschieber des Luftmotors transportiert die Luft (blau) in die linke Kammer, in der die Luft durch Herausdrücken der Membran das vorher eingefüllte Fluid (grün) komprimiert. Durch die Druckeinwirkung schließt sich das Ventil 1 und öffnet sich das Ventil 2 und ermöglicht so die Verteilung des Fluids (grün). Die rechte Membran wird durch die Welle, die sie mit der linken Membran verbindet, dazu gezwungen, dieselbe Bewegung durchzuführen, wodurch ein Vakuum erzeugt wird. Durch den Vakuumeffekt öffnet sich das Ventil **3** und schließt sich das Ventil **4** was das Ansaugen der Flüssigkeit ermöglicht (orange).

Der Absperrschieber des Luftverteilers leitet die Luft (blau) in die rechte Kammer, die durch Herausdrücken der Membran die vorher angesaugte Flüssigkeit (grün) komprimiert. Durch die Druckeinwirkung schließt sich das Ventil 3 und öffnet sich das Ventil 4 und ermöglicht so die Verteilung des Fluids (grün). Die linke Membran wird durch die Welle, die sie mit der rechten Membran verbindet, dazu gezwungen, dieselbe Bewegung durchzuführen, wodurch ein Vakuum erzeugt wird. Durch den Vakuumeffekt öffnet sich das Ventil 1 und schließt sich das Ventil 2 was das Ansaugen der Flüssigkeit

PUMPENINSTALLATION


AUF FASS

(geeignet für Fluide mit einer maximalen Viskosität von 10000 cPs, 20 °C)

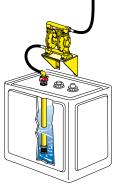

ANSAUGUNG MIT DOPPELTEM EINGANG

(geeignet für Fluide mit einer maxima len Viskosität von 50000 cPs, 20 °C)

ANSAUGUNG VON OBEN

(geeignet für Fluide mit einer maximalen Viskosität von 10000 cPs, 20 °C)

ANSAUGUNG VON UNTEN

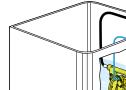

ermöglicht (orange).

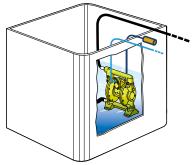
(geeignet für Fluide mit einer maximalen Viskosität von 50000 cPs, 20 °C)

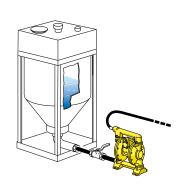
TAUCHPUMPE

(geeignet für Fluide mit einer maximalen Viskosität von 50000 cPs, 20 °C)

SILO


(geeignet für Fluide mit einer maximalen Viskosität von 50000 cPs, 20 °C)




AUF EINER MOBILEN EINHEIT

(geeignet für Fluide mit einer maximalen

Viskosität von 10000 cPs, 20 °C)

GROSSE AUSWAHL AN MATERIALIEN

IN KONTAKT MIT FLUIDEN STEHENDE TEILE

PUMPENKOMPONENTEN	MATERIAL	EIGENSCHAFTEN	HÖCHSTTEMPERATUR *
	Vernickeltes Aluminium	- durchschnittliche Resistenz gegenüber Abrasion und Korrosion - nicht für die Verwendung mit HKW (halogenierten Kohlenwasserstoffen) geeignet	+100 °C
	Aluminium mit Kataphorese- Behandlung	- große chemische Kompatibilität - hohe Resistenz gegenüber Abrasion und Korrosion	+100 °C
	Edelstahl AISI 316	- große chemische Kompatibilität - beste Alternative bei aggressiven Fluiden	+100 °C
	Polypropylen	- große chemische Kompatibilität - beste Alternative bei aggressiven Fluiden	+65 °C

MITTLERER MOTORBLOCK

PUMPENKOMPONENTEN	MATERIAL	EIGENSCHAFTEN	HÖCHSTTEMPERATUR *
	Vernickeltes Aluminium	- hohe mechanische Beanspruchbarkeit - elektrisch leitfähiges Material gemäß der Direktive ATEX	+100 °C
	Aluminium mit Kataphorese- Behandlung	 - hohe mechanische Beanspruchbarkeit - große chemische Kompatibilität - elektrisch leitfähiges Material für ATEX-Richtlinie - wirtschaftliche Alternative 	+100 °C
	Polypropylen	- große chemische Kompatibilität - allgemeiner Einsatz - kostengünstigere Lösung	+65 °C

MEMBRANEN - KUGELSITZE - KUGELN

PUMPENKOMPONENTEN	MATERIAL	EIGENSCHAFTEN	HÖCHSTTEMPERATUR *
90	Nitril NBR	- hohe Resistenz gegenüber Alkanen, Öl und Fett - gute Flexibilität	+90 °C
900	Hytrel®	 - hohe Zugfestigkeit und Rückverformung - hohe Resistenz gegenüber dauerhafter Verformung - gute Resistenz gegenüber industriellen, chemischen Substanzen und Lösemitteln - hervorragende Flexibilität auch bei niedrigen Temperaturen 	+65 °C
902	Santoprene TM	 hohe Biegefähigkeit und Dauerhaltbarkeit hervorragende Resistenz gegenüber Abrasion und Zerreissen hervorragende Resistenz gegenüber Säure, Lauge und Alterung auch bei hohen Temperaturen einsetzbar 	+110 °C
90	EPDM	- gute Kompatibilität mit organischen und anorganischen Säuren - hervorragende Resistenz gegenüber Hitze und Dampf - unempfindlich gegenüber Einwirkung von Oxidationsmitteln	+110 °C
900	PTFE Teflon®	- inert mit fast allen chemischen Reagenzien - hervorragende Wärmeresistenz - hervorragende dielektrische Eigenschaften - hervorragende Resistenz gegenüber Alterung	+120 °C
0	Acetalharz Delrin®	- hohe Dauerhaltbarkeit - hohe Druckbelastbarkeit - gute Formstabilität (niedrige Feuchtigkeitsaufnahme) - Resistenz gegenüber Alkohol und organischen Verbundstoffen	+115 ℃
0	Edelstahl AISI 316	- hohe Korrosionsbeständigkeit auch in salzhaltiger Umgebung - hervorragende Verträglichkeit mit Chemikalien und Industrie flüssigkeiten	+100 °C

^{*} Die mit der Flüssigkeit in Kontakt stehenden Materialien sowie die Flüssigkeit selber können die Betriebstemperatur beeinflussen.

LEITFADEN FÜR DIE AUSWAHL EINER PUMPE

WIE SIE DIE FÜR IHRE ANFORDERUNGEN GEEIGNETE PUMPE AUSWÄHLEN

	FÖRDERSTROM (DURCHFLUSS)	MAX Ø FESTE BESTANDTEILE	MODELL					
PUMPENGRÖSSE			POLYPROPYLEN	POLYPROPYLEN UND ALUMINIUM	ALUMINIUM MIT KTL-BESCHICHTUNG	EDELSTAHL AISI 316		
	60 l/min	1,5 mm	-	APPB-12	-	-		
1/2"	65 l/min	1,5 mm	PPB-12	-	-	-		
	70 l/min	1,5 mm	-	-	AAB-12	-		
1"	170 l/min	3 mm	-	APPB-1	AAB-1 / AAAB-1-9	-		
	145 l/min	3 mm	PPB-1	-	-	-		
	130 l/min	3 mm				PPIB-1		
	150 l/min	3 mm				AIB-1		
1.1/4"	200 l/min	3 mm	-	-	AAB-114	-		
1.1/2"	480 l/min	5,5 mm	-	-	AAB-112	-		
2"	580 l/min	6,5 mm	-	-	AABM-2 mit flansch	-		
	610 l/min	6,5 mm	-	-	AAB-2	-		

TECHNISCHE ASPEKTE, DIE FÜR DIE KORREKTE AUSWAHL DER PUMPE BERÜCKSICHTIGT WERDEN MÜSSEN

PUMPENGRÖSSE

Die Größe einer Pumpe hängt eng mit ihrem maximalen Förderstrom zusammen: je größer die Pumpe, desto größer der Förderstrom.

CHEMISCHE KOMPATIBILITÄT

Einige Teile der Pumpe sind immer in Kontakt mit dem zu pumpenden Fluid. Aus diesem Grund müssen diese Teile mit dem Fluid chemisch kompatibel sein.

ABMESSUNGEN DER FESTSTOFFE

Die maximalen Abmessungen der Feststoffe in dem zu pumpenden Fluid sind in den technischen Tabellen der Membranpumpen angegeben.

BETRIEBSTEMPERATUR

Die Höchst- und Mindestbetriebstemperatur muss die physikalischen Eigenschaften der verschiedenen Teile der Pumpe und ihre Interaktion mit dem gepumpten Fluid berücksichtigen.

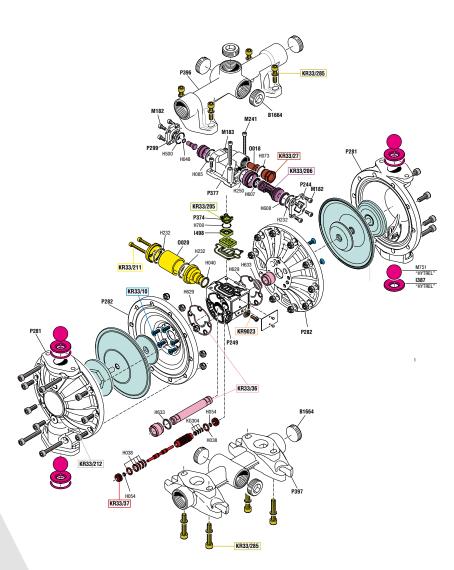
ABRASIONSRESISTENZ

Ist die zu pumpende Flüssigkeit sehr abrasiv, kann der Verschleiß von schnell verschleißenden Teilen (z.B. Membranen, Kugeln, Kugelsitze) durch die Auswahl einer größer als erforderlichen Pumpe verringert werden. Auf diese Art kann die Geschwindigkeit des in der Pumpe enthaltenen Fluids niedriger gehalten und somit die Abrasion an den damit in Kontakt stehenden Teilen verringert werden.

SYSTEMGRÖSSE

Um die Pumpenleistung zu optimieren, sollten die folgenden maßlichen Parameter des Systems eingehalten werden:

- 1) Ansaugleitung: Pumpenposition so nah wie möglich am Ansaugpunkt. Ist dies nicht möglich, darf der maximale vertikale Abstand nicht mehr als 6m betragen.
- 2) Ablaufrohr: das Rohr muss so bemaßt sein, dass ein Druckverlust vermieden wird. Der Innendurchmesser muss entsprechend dem abzudeckenden Abstand, der Temperatur und der Viskosität des Fluids gewählt werden.


ATEX-RICHTLINIE

PUMPENREIHE	BESCHREIBUNG	ZERTIFIZIERUNGSKLASSE
VOLLSTÄNDIGE ALUMINIUM-REIHE	Ausführung mit leitfähigem Material Mit Hauptkörper und Stutzen aus leitfähigem Metallmaterial (Aluminium)	II 2 GD (für Zone 1)
KATAPHORESE-REIHE	Ausführung mit leitfähigem Material Mit Hauptkörper und Stutzen aus leitfähigem Metallmaterial (Aluminium)	II 2 GD (für Zone 1)
EDELSTAHL AISI 316 UND ALUMINIUM-REIHE	Ausführung mit leitfähigem Material Gebaut mit Pumpenkörper (Aluminium) und Stutzen (Edelstahl AISI 316) in leitfähigen Metallmaterialien	(für Zone 1)
EDELSTAHL AISI 316 UND POLYPROPYLENREIHE	Mit Hauptkörper aus nicht leitfähigem Kunststoffmaterial (PP)	NICHT ZERTIFIZIERT
ALUMINIUM- UND POLYPROPYLENREIHE	Ausführung mit teilweise leitfähigem Material Die Stutzen bestehen aus nicht leitfähigem Kunststoffmaterial (PP) und der Hauptkörper aus leitfähigem Material (Aluminium)	II 3 GD (für Zone 2)
VOLLSTÄNDIGE POLYPROPYLEN-REIHE	Mit Hauptkörper und Stutzen aus nicht leitfähigem Kunststoffmaterial (PP)	NICHT ZERTIFIZIERT

Sichere Wahl mit Original-Ersatzteilen

...für einen schnellen und effizienten Ersatzteilservice

ALLGEMEINE GESCHÄFTSBEDINGUNGEN

Art. 1 WARENLIEFERBEDINGUNGEN

Die Waren werden ab Werk ECODORA S.r.l. geliefert. Der/die anschließende Transport/Spedition erfolgt durch den Kunden in seinem Namen und auf seine Rechnung, auch gegebenenfalls durch einen von ihm beauftragten und benannten Spediteur. Der Kunde übernimmt alle Risiken im Zusammenhang mit der Verladung, der anschließenden Lagerung und dem Transport.

Art. 2 MINDESTBESTELLMENGE

Der Mindestbestellbetrag jedes Auftrags beläuft sich auf 1.500,00 € ohne Steuern, Abgaben, Zollgebühren, Rabatte, Gutschriften und alle anderen Abzüge, die nicht im Warenpreis inbegriffen sind. Falls ECODORA S.r.l. nach eigenem Ermessen Bestellungen über einen geringeren Betrag annehmen sollte, so wird pauschal ein Aufpreis von 155,00 € zur Abdeckung der Bearbeitungskosten berechnet.

Art. 3 ZUBEHÖR

Das gesamte in der Preisliste angegebene Zubehör (Abdeckungen, Ölventile, Ölpistolen, Fettpistolen, Sonden, Kappen, Kupplungen, schwenkbare Bügel usw.) werden ausschließlich zur Montage an Artikeln des Herstellers ECODORA S.r.l. geliefert

Art 4 REKLAMATIONEN

Etwaige Mängel, die unmittelbar nach einer kurzen Prüfung der Waren festgestellt werden (Beschädigung, Fehlmengen oder Lieferung des falschen Produkts), müssen der Gesellschaft binnen 8 (acht) Tagen nach Warenerhalt schriftlich angezeigt werden. Verdeckte Mängel, die erst beim Betrieb festgestellt werden, müssen ECODORA S.r.l. innerhalb von 8 (acht) Tagen nach deren Entdeckung schriftlich angezeigt werden. Warenrücksendungen müssen vorab von ECODORA S.r.l. genehmigt werden, wobei der Kunde die entsprechenden Frachtkosten trägt.

Art. 5 LIEFERZEITEN/-FRISTEN

Lieferzeiten und -daten sind Richtwerte und können Änderungen unterliegen. Verspätete Lieferungen berechtigen den Kunden weder dazu, den Auftrag zu stornieren, noch Schadensersatz aufgrund der Lieferverzögerung geltend zu machen. Die Lieferzeiten für dringende Bestellungen sind direkt mit ECODORA S.r.l. zu vereinbaren. ECODORA S.r.l. ist berechtigt, Bestellungen überhaupt nicht, vollständig oder nur teilweise zu bearbeiten, ohne dass dadurch ein Anspruch auf Schadloshaltung oder Schadensersatz entsteht.

Art. 6 PACKSTÜCKE UND VERPACKUNGEN

Die Verpackungskosten sind im Preis inbegriffen, ausgenommen die Kosten für Sonderverpackungen, die zum Selbstpreis in Rechnung gestellt werden.

Art. 7 PREISE

Die aktuelle Preisliste ersetzt und macht die vorhergehende Fassung nichtig. Bei Änderungen unserer Preisliste und/oder der einzelnen Artikelpreise werden die Waren zu dem am Tag der Auftragsbestätigung gültigen Preis versendet. Die Preisliste und/oder die einzelnen Artikelpreise können aufgrund von geänderten Marktbedingungen oder technischen Innovationen/Veränderungen am Produkt auch ohne Vorankündigung geändert werden. Die Preise verstehen sich ab Werk ECODORA S.r.l.

Art. 8 ZAHLUNGEN

Zahlungen dürfen ausschließlich zugunsten von ECODORA S.r.l. zu den vereinbarten Bedingungen erfolgen. Abzüge oder Auf- und Abrundungen werden in keinem Fall akzeptiert. Bei einer gegenüber den vereinbarten Bedingungen verspäteten Zahlung behält sich ECODORA S.r.l. das Recht vor, ab dem Tag nach der Fälligkeit Verzugszinsen zum geltenden Zinssatz und ggf. die Zusatzkosten in Rechnung zu stellen. Die an die Zahlungsfrist geknüpften Rabatte, die bereits gutgeschrieben wurden, werden erneut berechnet.

Art. 9 GARANTIE

ECODORA S.r.l. stellt für jedes Produkt Informationen mit besonderen Installations-, Montage- Wartungs- und Betriebsanleitungen sowie die Information über die notwendigerweise am Produkt durchzuführenden Kontrollen bereit. Alle Daten und technischen Angaben im Katalog und in der geltenden Preisliste sind unverbindlich und können ohne Vorankündigung geändert werden, um die Produktqualität zu verbessern. Auf alle von ECODORA S.r.l. hergestellten Produkte wird ab der Lieferung an den ersten Anwender ein Garantiezeitraum von 5 (fünf) Jahren gewährt. Der Anwender, der beabsichtigt, gegenüber ECODORA S.r.l. einen Garantieanspruch geltend zu machen, muss gemeinsam mit der Seriennummer des Artikels die Kaufrechnung - oder ein anderes gleichwertiges Dokument - aufbewahren und vorlegen. Die Garantiezeit von 5 (fünf) Jahren wird nicht für Verschleißteile (wie Dichtungen, Membranen, O-Ringe, Schläuche usw.) sowie für elektronische Bauteile und verkaufte Artikel anderer Hersteller als ECODORA S.r.l. gewährt (diese sind im aktuellen Produktkatalog mit einem roten Sternchen gekennzeichnet). Auf die genannten Teile und Artikel wird ab dem Datum der Lieferung an den ersten Anwender eine Garantie von 1 (einem) Jahr gewährt.

Die Garantiezeit von 1 (einem) Jahr gilt ferner für folgende Produkte:

- digitale Literzähler und FCS-System;
- Kabelaufroller;
- elektrische, hydraulische und pneumatische Motoren, die an den industriellen Schlauchaufrollern der Serie 600 und 700 montiert sind. Eine unsachgemäße Installation, Verwendung oder Wartung des Produkts führt zum Erlöschen der Garantie. Die Artikel können nach schriftlicher Mitteilung zur Prüfung und Annahme kostenfrei an unser Werk zurückgesendet werden. Die Garantie endet in jedem Fall im 10. Jahr nach dem Herstellungsdatum (das in der Seriennummer enthalten ist), falls das Garantieende vor dem Ablauf der o. g. Garantiezeiträume (1 oder 5 Jahre nach der Lieferung an den ersten Anwender) eintreten sollte.

Art. 10 HAFTUNG

ECODORA S.r.l. ist von jeder Haftung und Verpflichtung in Bezug auf Personen- oder Sachschäden befreit, die aufgrund oder bei der Anwendung der Produkte bzw. infolge der Verwendung von Produkten entstehen, die beim Transport beschädigt worden sind bzw. die manipuliert, verändert oder unsachgemäß verwendet, gelagert, installiert, geschützt oder aufbewahrt wurden, ohne die ECODORA S.r.l. Anweisungen in den Installations-, Betriebs- und Wartungsanleitungen für jedes Produkt zu beachten. ECODORA S.r.l. haftet ausschließlich für den Warenwert des gelieferten Produkts und nicht für etwaige Kosten des Kunden oder andere damit zusammenhängende Kosten

ECODORA S.r.l. ist alleiniger Inhaber des geistigen Schutzrechts der Marke ECODORA. Alle Rechte in Bezug auf die Nutzung und Vervielfältigung sind vorbehalten.

ECODORA ist eine eingetragene und international geschützte Marke. Es ist jedem verboten, die Marke ECODORA, deren Logo oder Teile davon in jeglicher Form, zu jeglicher Zeit und in jeglichem Zusammenhang, auch durch Manipulation, zu verwenden, zu kopieren und zu nutzen.

ECODORA S.r.l. ist alleiniger Eigentümer des geistigen Schutzrechts an den Bildern, die in diesem Katalog veröffentlicht sind. Jede nicht genehmigte Vervielfältigung ist verboten.

Jede generelle Nutzung der durch das geistige Eigentum geschützten Produkte von ECODORA S.r.l. ist verboten und bedarf der vorherigen Einwilligung und schriftlichen Genehmigung seitens ECODORA S.r.l.

FÜR DEN AUSLÄNDISCHEN MARKT

Art. 11 VERTRAULICHKEIT

Die während der Vertragserfüllung ausgetauschten Daten, die nicht öffentlich bekannt sind, unterliegen der Vertraulichkeit- und Geheimhaltungspflicht und müssen geschützt werden. Sie sind als Betriebsgeheimnis anzusehen und müssen vertraulich behandelt werden. Die Daten dürfen nicht an Dritte weitergegeben werden. Ihre Nutzung ist ausschließlich zur Erfüllung des Liefervertrags zulässig.

Art. 12 DIRITTI DI PROPRIETÀ INTELLETTUALE

Die Marke ECODORA sowie die Namen ECODORA und ECODORA S.r.l., das Logo und andere Kennzeichen sind international eingetragene Markenzeichen. ECODORA S.r.l. gestattet keinesfalls deren Nutzung und Verwendung. Die Inhalte der Website, der Kataloge, Preislisten, Betriebsanleitungen und ähnlicher Dokumente dürfen ohne schriftliche Genehmigung von ECODORA S.r.l. selbst auszugsweise nicht vervielfältigt, mit elektronischen oder herkömmlichen Mitteln übermittelt noch geändert oder auf beliebige Weise zu irgendeinem Zweck verwendet werden. Alle Rechte sind Eigentum von ECODORA S.r.l. Der Kunde nimmt zur Kenntnis, dass alle Inhalte, Bilder, Fotos und nicht allgemein verwendete Zeichen in den Katalogen, Preislisten, Betriebsanleitungen oder in ähnlichen Dokumenten, auf der Website www.ecodora.com und/oder auf anderen Kanälen und sozialen Netzwerken, die von ECODORA S.r.l. für Informations- und Marketingkampagnen genutzt werden, im Sinne des Urheberrechts und des Gesetzes über gewerbliches Eigentum alleiniges Eigentum von ECODORA S.r.l. sind

Art. 13 DATENSCHUTZERKLÄRUNG IM SINNE DER ITALIENISCHEN GESETZESVERTRETENDEN VERORDNUNG NR. 196/2003

Gemäß Art. 13 der italienischen gesetzesvertretenden Verordnung Nr. 196/2003 - Datenschutzgesetz - wird darauf hingewiesen, dass die personenbezogenen Daten, die beim Kauf bzw. bei der Lieferung der Waren oder Dienstleistungen erhoben werden, ausschließlich dazu verarbeitet werden, um vertragliche Pflichten, spezifische Anfragen von Kunden/Lieferanten, gesetzliche Verpflichtungen, insbesondere buchhalterische und steuerliche Pflichten, und Anordnungen von öffentlichen Behörden zu erfüllen oder um rechtliche Ansprüche in einem Gerichtsverfahren geltend zu machen. Ferner werden die Daten für betriebsinterne Handelsstatistiken und zur Bereitstellung von kommerziellen Informationen über unsere Produkte und Dienstleistungen verwendet, sofern die betroffene Person ihre ausdrückliche Einwilligung dazu erteilt hat. Die Datenverarbeitung erfolgt in Papierform oder

Dienstleistungen verwendet, sofern die betroffene Person ihre ausdrückliche Einwilligung dazu erteilt hat. Die Datenverarbeitung erfolgt in Papierform oder auf elektronischem Weg sowie mit Modalitäten und in dem Umfang, die zum Erreichen der genannten Zwecke notwendig sind. Die Daten können anderen Gesellschaften der Gruppe zu den hier angegebenen Zwecken mitgeteilt und auch Mitarbeitern unseres Unternehmens, Beratern und anderen Lieferanten im Rahmen der oben beschriebenen Zwecke bekannt gemacht werden.

Die Bereitstellung der Daten ist zur ordnungsgemäßen Erfüllung der vorvertraglichen und vertraglichen Pflichten unbedingt erforderlich. Die Nichtbereitstellung der Daten könnte zur Folge haben, dass wir die vertraglichen Pflichten nicht ordnungsgemäß erfüllen und Sie nicht über die von unserem Unternehmen angebotenen neuen Produkte und Dienstleistungen auf dem Laufenden halten können.

Die Datenverarbeitung erfolgt für die gesamte Dauer des bestehenden Vertragsverhältnisses und auch im Anschluss daran, um gesetzliche Verpflichtungen zu erfüllen.

Art. 14 RECHTE DER BETROFFENEN PERSONEN

Die Datenschutzerklärung dient dazu, das Ausmaß und die Art und Weise der Datenverarbeitung festzulegen, damit der einzelne Kunde und/oder Lieferant aufgrund dessen freiwillig seine Einwilligung zur Erhebung und anschließenden Verwendung der Daten erteilen kann. Den betroffenen Personen werden alle Rechte im Sinne von Art. 7 des Datenschutzgesetzes zuerkannt, insbesondere das Recht auf Zugriff zu den eigenen personenbezogenen Daten, das Recht, die Aktualisierung, Berichtigung oder Löschung der Daten zu verlangen, wenn diese unvollständig oder falsch sind bzw. widerrechtlich erhoben wurden, sowie das Recht, sich der Verarbeitung aus legitimen Gründen zu widersetzen. Diesbezügliche Anfragen sind an ECODORA S.r.l. zu richten.

Im Sinne des genannten Artikels haben die betroffenen Personen das Recht, die vollständige und aktuelle Liste der Datenschutzbeauftragten zu erhalten und zu verlangen, dass widerrechtlich verarbeitete Daten gelöscht, in anonyme Form umgewandelt oder gesperrt werden. Zudem haben die betroffenen Personen das Recht, sich der Verarbeitung von personenbezogenen Daten aus legitimen Gründen zu widersetzen. Um diese Rechte auszuüben und wenn Sie Probleme feststellen oder Fragen zum Datenschutz haben, können Sie Ihre Anfragen schriftlich an folgende E-Mail-Adresse richten: info@ecodora.com.

Art. 15 DATENVERANTWORTLICHER

Der Datenverantwortliche ist ECODORA S.r.l. mit Sitz in Via Marangoni 33, Cassola (VI) – Italien, an dem die Daten verarbeitet werden.

Art. 16 ZUSTÄNDIGER GERICHTSSTAND

Für alle Rechtsstreitigkeiten ist das italienische Gericht Vicenza zuständig.

Der Hersteller übernimmt keine Haftung für mögliche Ungenauigkeiten in diesem Katalog, die auf Abschrift- und Druckfehler zurückzuführen sind.

Der Hersteller behält sich zudem das Recht vor, jederzeit ohne Vorankündigung und nach eigenem Ermessen technische und ästhetische Änderungen und Verbesserungen vorzunehmen.

Das Unternehmen wendet ein Qualitätssystem an, das nach ISO 9001:2015 zertifiziert ist

ECODORA S.r.l. Vicenza - Italy Tel. +39 0424 570891 Fax +39 0424 571354 www.ecodora.com info@ecodora.com

